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PREFACE

This monograph is intended mainly for postgraduate students and
beginning theoretical physicists. Its aim is to fill the gap between standard
text-books in quantum mechanics, on the one hand, and advanced-level
books and periodical articles in the theory of quantized fields, on the other.

Traditional courses in quantum mechanics mostly deal with general
principles and the theory of stationary states. Particular problems of
scattering theory, unstable states, and multichannel processes are generally
treated in greatly condensed form, so that the student cannot acquire
sufficient knowledge and techniques for independent work in this field, On
the other hand, noninitiates embarking on a course in the theory of quantized
fields and the closely related relativistic quantum mechanics have to fight
their way through a jungle of unfamiliar concepts associated with Lorentz
invariance, causality, mass and charge renormalization, and introduction
of particle creation processes.

In writing this book, we started with the premise that renormalization
and creation problems can be studied in the nonrelativistic approximation,
which is much more meaningful to the beginner.

The reader will find here a detailed treatment of the theory of scattering
and the -matrix, will learn how to work with a continuum of states, and
familiarize himself with the theory of unstable particles.

A substantial part of the book is based on the original researches of the
authors. This includes the problem of scattering amplitude singularities
when new channels are opened, the theory of unstable particles, the
lifetime of intermediate states in scattering, a new formulation of the
Lee model, nonrelativistic treatment of particle creation and nonconser-
vation of parity.

The choice of material was thus of necessity somewhat subjective. We
believe, however, that this shortcoming is at least partly compensated
by the efforts all authors generally take over the presentation of their
own results. We hope that the reader will find much interesting and
useful information among the stimulating and complex problems which lie
hidden in the depths of the commonplace, nonrelativistic quantum mechanics
and in the familiar Schroedinger equation,

A.I.Baz'
Ya.B. Zel'dovich
A.M. Perelomov

21 June 1966

il




Table of Contents

PREFACE........ e et e e et e e e
Chapter 1. THE DISCRETE SPECTRUM . . ... ... ...... e e e e e e
§ 1. Introduction ..... e e e e e e e
§ 2. The qualitative form of the wave function. . .. ............
§ 3. Low=-energy bound states . ...... e e e
§ 4. A particle in the field of several singular potentials. .........
§ 5. Coulomb potential , , .., ............... e e
§ 6. Three-dimensional oscillator .., ....... e e e e
§ 7. The virial theorem............... e e e e e . e
§ 8. Identical particles and statistical physics ................
Chapter 2, THE CONTINUUM ........... e e e e
§ 9. Introduction. Continuum wave functions with [=0 ... ... ...

§10. Motion with orbital momentum [ == 0. Motion in a Coulomb field

§11. Continuum wave functions. Scattering cross section (neutral
Particles) . . . . . .. i e e e e e

§12. The optical theorem and its generalization . ..............

Chapter 3. ANALYTICAL PROPERTIES OF THE WAVEFUNCTION . ... ..

§13. Analytical properties of the S-matrix . .................
§14. "FalSe” POLES . .. .\ oo
§15. Properties of residues of S, (B). . . ........ ... .. .. ... ..
§16. Dispersion relations . . . .. .. oo i it

Chapter 4. GREEN'S FUNCTION AND PERTURBATION THECRY ... ... ..

§17. Introduction. Green's function of the radial Schroedinger equation
§18. A regular method of deriving Green's functions, Green's function
of the three-dimensional Schroedinger equation . .......,...
§19. Some properties of Green's function . ... ...... ... ...
§20. Green's function for several noninteracting particles ... ......
§21. Perturbation theory: coordinate representation , ....... .o
§22. Perturbation theory: momentum representation. . ....,.......
§23. Convergence of the perturbation theoretical series. . . ... .....

iii

13
16
22
29
31

34

34
40

41
52

56

56
63
67
71

77
717

81
86
88
90
94
91




§24. Diagram technique . .............00.... e 102

§25. Time-dependent Green's function . ... ................. 105
Chapter 5. QUASISTATIONARY STATES ............. e e 108
§26, Introduction., Gamow'stheory . ..........c.oouovueean 108
§27, Wave functions ....... ettt e e .. 113
§28. Example of a quasistationary state . .. .. ..o v v e v e ves o 1117
§29, The decay of a quasistationary state. ....... e e e 121
§30. Radioactivedecay . ...... ..t c e 126
§31, Perturbation theory for quasistationary states . ............. 128
§32. The asymptotic expression of the wave function for r — oo
t—>o0and .. .ivi i et e e e 131
§33. Creation of an unstable particle ., ..................... 134
§34. Transition from quasistationary to stationary states . ......... 139
§35. Collisiontime. ... oo ive oo e e e 141
§36. Other types of long-lived states. . .......... e 144

Chapter 6. FUNDAMENTAL PROPERTIES OF MULTICHANNEL SYSTEMS . . 147

§37. The wave function of a multichannel system .............. 147
§38. Cross sections, The unitarity of theS~matrix. ... ........., 151
§39. Time reversal., The symmetry of the S-matrix . ... ..... ... 183
§40. Some analytical properties of the S=matrix . . ... .......... 159
§41. Constraints on the residues of the S-matrix elements . . . ... ... 161

§42. Expression for the S-matrix and its relation to the R-matrix . ... 164

§43. Mean lifetime of continuum states ... .................. 161
Chapter 7. THRESHOLD EFFECTS .......... e e e e e 170
§44. Energy dependence of the elastic scattering cross section at low
energies. . ......... f et et e et e e e e 170
§45. Energy dependence of two-particle reaction cross sections for
low energies of incoming or outgoing particles . .. ......... 174
§46. Energy dependence of the X (a, a)X scattering cross section near
the X (a, b) Y threshold, when X, a, b, Y are spinless neutral
particles . . ... e e et 178
§417. Physics of effects near the threshold of an inelastic channel . . .. 181
§48. Generalization to particles with spin .. ... e e 183
§49. Generalization to the multichannel case . ... . BN 185
§50. Singularities near the creation threshold of charged particles . .. 181
Chapter 8. THE LEE MODEL
§51. Introduction. The momentum representation ........... - 193
§52. The coordinate representation, . . v o oo s v o o v oo o v o s o avnan 201
§53. Interaction with unstable intermediate particle ........... 204
§54. Interaction between Nand V .. ...... et e 206

vi




e — ——

§55. Vector interaction . . .
§56. Parity nonconservation in the Lee model , . .,
§57. Electric dipole moment of an unstable particle

BIBLIOGRAPHY . . .

AUTHOR INDEX . .

SUBJECT INDEX . .

D I L R R

...................

vii

............

............

...........

208
215
220
225
232

235



Chapter 1

THE DISCRETE SPECTRUM

§ 1. INTRODUCTION

In this chapter we discuss some properties of the solutions of the
Schroedinger equation which have a discrete spectrum of eigenvalues.
These solutions, as we know, describe bound states, Three particular
cases will be considered: (a) states with low binding energy, (b) bound
states in a Coulomb field, (c) the states of a three-dimensional harmonic
oscillator.

A bound state with energy e small compared to the depth U, of the
potential well is often encountered in applications; as an example, we can
mention the ground state of a deuton. The properties of these states are
treated in some detail in § 3, where particular stress is placed on the
case e — 0, when the bound level has just formed. In § 4 we consider the
motion of a particle in two or several potential wells and the important
concept of a pseudopotential is introduced,

Fairly detailed treatment of cases {b) and (¢) can be found almost in any
standard textbook on quantum mechanics, and we will therefore concentrate
only on the specific qualitative properties of these states, Here we have
an example of degeneracy (generally called "accidental' degeneracy) of
states with different values of the angular momentum [. Superpositions
with various ! values thus also constitute stationary states, and analternative
classification of levels can be developed in this case.

The expression "accidental’ degeneracy is by no means to be understood
literally! The situation here is by no means accidental. It is a consequence
of a special property of classical mechanical systems, the existence of
closed trajectories or paths. In quantum mechanics, degeneracy is a
consequence of the separation of variables in several coordinate systems.
A more fundamental reason, however, is the existence of a transformation
group which leaves the Schroedinger equation invariant. All the other
properties follow from the existence of this invariant group. These topics
are discussed in § 5 for a Coulomb potential and in § 6 for the harmonic
oscillator. The so-called "coherent' states are also discussed in § 6.
These states, though not stationary, have a number of remarkable pro-
perties, e.g., they are the closest (in a certain sense of this word) to the
properties of a classical oscillator. '

Finally, § 7 gives a derivation of the so-called virial theorem and some
of its generalizations are considered.
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A few words of guidance to the reader.

The only purpose of § 1 and § 2 is to introduce the notation for future
use. A reader who has recently taken a standard course in quantum
mechanics is urged to stop here and to skip the rest of § 1 and all of § 2.
Otherwise he may become prejudiced and put the book aside before even
reaching those topics which are still unfamiliar to him and are of the
main interest.

We will now briefly outline the fundamental postulates of quantum
mechanics.

The state of a system in a nonrelativistic quantum mechanics is
completely described by a wave function ¥, whose variation in time is
determined by the Schroedinger equation (henceforth abbreviated to Sch. Eq.)

. OW
lﬁﬁ—:H\F, (1.1)

where H is the system Hamiltonian.,

We will mainly consider the case when the Hamiltonian does not depend
explicitly on time. In this case stationary states exists, for which the
probability density |¥|? is constant in time. The wave function of a
stationary state has the form

LBt

Y(t)y=tve ";
whence it follows that ¢ is an eigenfunction of the Hamiltonian,
Hy = Ey, (1.2)

which describes a state with a certain real energy E.
For the case of a single particle in a constant external field we have

A3
H=— A+ U(n),

" (1.2")
(— g8+ U@)0() =Ev ().

The wave function ¢ (r) should satisfy the usual conditions: the function
and its first derivative are single-valued* and continuous in the entire space.

In the applications the potential U (r) is often spherically symmetric,

i.e., it is a function of r only. In a spherically symmetric field the angular
momentum operator L commutes with the Hamiltonian operator H (this
corresponds to the conservation of angular momentum in classical mechanics).
Moreover, the operator H commutes with the inversion operator P (this
property is without analog in classical mechanics /7/).

Since the operators H,L% L;, and P commute, the eigenvalues of H may
simultaneously be the eigenvalues of L% L., and P. In other words, a
stationary state may have a definite orbital momentum !, where LY = [ (I 4 1),
lis an integer, a definite value of the momentum projection m on any axis z,

® The condition of single-valuedness of the wave function is treated in detail by Pauli /1, 2/, This
condition leads, e. g., to such nontrivial effects as magnetic flux quantization in a multiply connected
superconductor /3, 4/ and formation of quantized vortex "threads” in liquid helium /5, 6/.
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m taking (21 +1) values from - [ to +[, and a definite parity P =+1 or
P = -1, In the one-particle problem the parity is uniquely fixed by the
orbital momentum, P = (—1), i.e., the parity of the state is equal to the
parity of the number !,

It follows from the preceding that the Sch. Eq. has solutions of the form

Y (r)=Ri(r) YVin 6, ¢). (1.3)

Here 08 and ¢ are the polar and the azimuthal angle of the vector r,
Yi» 8, ¢) are the spherical functions, and R, () is a function which depends
on r only, Insertion of (1.3) in (1,2) gives the following equation for R;:

L‘d‘("dff) +[5FE—u— LE R =0 (1.4)

™ dr

We introduce a new function
ulr) = rR. {0, (1.3")

and the first derivative drops out from the Sch. Eq.

%+ [ — (v + ) =0, (1.5)

Here k=V2 mE/Rfand V = ?;"—,U. We will refer to V as the potential,

whenever this need not cause confusion.
+1)

The centrifugal potent1a1 can be incorporated in V, so that

equation (1,5) takes the form

% @ =V, =0 (1.6)

The properties of this equation are analyzed in any standard text on
quantum mechanics (excellent treatment will naturally be found in Landau
and Lifshitz's "Quantum Mechanics" /8/).

As $(r) is bounded, we have the following boundary conditions for X:

% (r)—0 for r—0,

u() (1.7)
bounded for r=0 and r— «.

Moreover, X, and ¥, should naturally be continuous, *

We further choose the point of zero energy in such a way that V (r)
vanishes for r — o,

Almost all the interactions between particles that we find in nature
{except the Coulomb force and a few other interactions) are described by
rapidly decreasing potentials, i.e., potentials which fall off faster than I/r
for large r. In many cases these interactions are actually ignorable for
all r greater than some R, so that we may take V()= 0 for r >R. We

®  This is associated with the fact that equation (1.6) contains second derivatives: if either x'k or ¥y is dis-

continuous, the right-hand side of (1.6) will containa 8- or a ¥-function, and no longer be equal to zero,
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will thus speak of short-range potentials, Introduction of the cutoff radius
R greatly simplifies the mathematics, and we start the discussion with the
particular case of a short-range potential. The centrifugal potential may
be treated as a short-range potential and, so as to avoid further complica-
tions, we take the orbital momentum [ equal to zero.

We can now formulate our problem as follows:

Find all the solutions g, (r) of the equation

X, + (& —V(r)x, =0 for r<R, } (1.8')
1, + &%, =0 for r>R,

which satisfy conditions (1.7).
The wave function in this case is

P = Ria) Yoo 60, 0) = -2 20 (1.3")

For r >R, as we see from the second equation in (1,6'), we have two
solutions?

KD = ek, (1.8)

For r <R we also have two solutions, but only one of them is acceptable,
as the other does not satisfy the boundary conditions at r = 0. Indeed, x
for r—0is sought in the form of a power function r°; then by (1.6')

clo—N=—rE -V

If PV (r)—> 0, we find two values for ¢, namely 0 and 1. For r-— 0 the
Sch. Eq. thus has two solutions

P, (1) > a for r—0, \p,(r)—>—lr’- for r—0,
where a and b are constants. The solution ¢, must be rejected since

b

so that for r = 0, ¥, does not satisfy the Sch. Eq.** We are left with the
only solution 4,, which corresponds to the power index o= 1,

The above treatment can be regarded as substantiating the boundary
condition g (r) = 0 for r-— 0. The solution which satisfies this boundary
condition will be designated x{ ().

* In the case of rapidly falling potentials we also have two solutions x{¥'() which behave as e£*" for
large r. These solutions are often written in symbolic form as f(F &, r). Their properties were treated
in some detail by Jost /9/, and in this way they earned the name of Jost functions. For potentials with

a Coulomb tail, U = &, the asymptotic behavior of the functions xk* (r)for r — oo is of the form
r

eil(hr—n In 2kr) , where n = W
*+ A solution of this kind is used in case of a singular potential,




§ 1. INTRODUCTION

Now consider the regions of positive and negative energies. * Positive
energies correspond to real values of %4, In this case, the two solutions
(1.8) remain bounded for all r > R, i.e., both solutions are acceptable in
this region.

The most general solution for r > R can be written in the form

% () =AE @S —S ®)1L). (1.9)

For r = R this solution should match continuously the solution for the
interior region:

AR (D — SR ) | _p = %P (R), ] (1.10)
AR) (U — S (*) 15" =g = XY (R).
The matching can be ensured by an appropriate choice of 4 and §. Indeed,

approaching (1.10) as a system of simultaneous equations for A and S,
we readily find

s = BT
Xk 'Xk — Xk Xk( r=R (111)

A = B |

r=R

Thus, for each positive energy value, the Sch. Eq. has one and only one
solution. The physical meaning of this unique solution will be discussed in
what follows.

For negative energies, the position is essentially different. Negative E
correspond to imaginary &, i.e., k= ilk}, **

The solution %§’ = é*" exponentially diverges for r — oo and thus does
not meet the second condition in (1.7). The most general solution for r >R
thus has the form

AE) A (), (1.12)
and the matching condition for the interior and the exterior functions is

il
e

il

1

=— k| (1.13)

r=R r=

This condition is in fact a transcendental equation for || and it is
satisfied only by certain discrete imaginary values k = k, (or, correspond-
ingly, discrete negative energies E,).

We see from (1.13) that this relation can be satisfied only if the loga-
rithmic derivative of x{’ is negative. This, as will become clear from
what follows, is possible only if V (r) is negative in the main (i.e., a
repulsion potential) and has a large absolute value, In this case, the
functions of the discrete spectrum for r > R have the form

%, () = A (Ra)x(D) (1) = A (Ra)e M,
The case of positive energies is treated in more detail in Chapter 2.

We follow the usual convention which places & in the upper halfplane, In principle, of course, nothing
prevents us from considering the value of k in the lower halfplane, when ¥ and ) are interchanged.
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i.e., they decay exponentially for large r.* For r < R these functions are
also bounded, and the integral

o

Slxk"(r)l’dr (1.14)

converges. The function X, is generally normalized so that this integral
is equal to unity. Since X, falls off exponentially for r > R, the solution
represents a localized state of a particle in space. The solutions of this
type correspond to the classical case of bounded motion of a particle with
negative energy, and the corresponding states are the bound states of
quantum mechanics,

Thus, for positive energies, the Sch. Eq. has a unique solution (satis-
fying the boundary conditions) for each positive value of E (i.e., for k> 0)
and for any .

For negative energies and fixed !, the equation is solvable (if at all)
only for some discrete values E = E,;. This result is generally formulated
as follows: for positive energies, the energy eigenvalues constitute a
continuous spectrum, whereas for negative energies the spectrum is
discrete.

In a discrete spectrum, each level in general has a definite value of /.,
Levels with equal ! and different m are degenerate, this being a consequence
of the spherical symmetry of the potential,

However, for !+ 0, the solutions themselves are not spherically
symmetric; their angular dependence is determined by the angular part
of the wave function, Y. (0, ¢). *

The solution moreover has a definite parity P, The degeneracy corre-
sponding to different m for one ! does not alter the situation: all the degen-
erate levels and any linear combination of these levels (which is also a
solution) have the same parity P. The probability density |$* (for a charged
particle this is the charge density) is not affected by space inversion, since
this transformation changes ¢ either to ¥ or to —¥.

This proves that the charge density in a spherically symmetric potential
always has a center of symmetry (although it need not be spherically
symmetric), so that the electric dipole moment is always zero.

In the special case of a Coulomb potential U = — ZTe’ we encounter the
so-called accidental degeneracy, i.e., levels with different ! have exactly
equal energies. The conclusion of zero dipole moment thus breaks down,
and the particle may occupy a state with a finite dipole moment (this effect
is treated separately in § 5).

* Note that for rapidly decreasing potentials the asymptotic behavior of xk,,(’) is described by PR
r — oo, whereas for potentials with a Coulomb tail U (1) ~2 for r— oo
r
—Nng—Iknlr ma
Ag ()~r €T gp=_TT
e { tn " h’lknl '
Note that the sum 2 Y (8, ®) | is independent of the angles 6 and g. Hence it follows that if for

m=-{
a given /[ the particle may occur with the same probability in all states with different m, the probability

density of finding the particle at a certain point in space is spherically symmetric.
This explains, among other things, why the charge density in closed electron shells of an atom or in the
closed shells of a nucleus is spherically symmetric,
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§ 2. THE QUALITATIVE FORM OF THE WAVE FUNCTION

Consider the qualitative form of the solutions y (r) of the Sch. Eq. We
will discuss separately the regions with £ <V (r) and ¥ >V (r).

For g* <V (r) the total energy is less than the potential energy and for
k* >V (r) the total energy is greater than the potential energy. The kinetic
energy is thus respectively negative or positive,

The behavior of % (r) will be examined in the quasiclassical approxima-
tion, * which is sufficiently faithful for purposes of qualitative treatment,

We write (1.6) in the form

G (F) =0 (1.6")
where pis the classical momentum of the particle:
pir) =KYE=V().
The solution of (1.6") is sought in the form
% (r) = elotn, (2.1)
For o (r) we thus obtain an equation
ic" — (¢")* + P'A* = Q.

If (as is usually assumed) o"<€ (0')!, this equation yields

¢ =120, o=silpar (2.2)

* In quantum mechanics this approximation was first introduced by Wentzel /10/. Kramers /11/, and
Brillouin /12/, and it is correspondingly designated as the WKB approximation. The quasiclassical
approximation received the main impetus in connection with the solution of quantum-mechanical
problems, although Liouville /13/ and Rayleigh /14/ already approached individual problems by a
similar technique (on this subject see /15/, where an extensive bibliography will be found; this book
also gives solutions of various particular problems). A different approach is given in /16/. Notice
that the quasiclassical approximation was developed in maximum detail for the one-dimensional Sch. Eq.
with a time-independent potential. An example of a quasiclassical solution for a time-dependent potential
will be found in /17/. For many-dimensijonal problems a useful technique is generally to change over to
new coordinates in which the variables in the Sch. Eq. can be separated, so that the problem is reduced to
the one-dimensional case, In the three-dimensional case of free motion, say, the variables are separable
in ten coordinate systems besides the spherical system /18/. If one fails to find a coordinate system with
separable variables, the derivation of the quasiclassical solution is a difficult problem. An example of
this kind for the two-dimensional case is examined in /19/. 1In /236/ it is also shown that in a number of
cases quantum-mechanical approach sheds new light on the results of classical mechanies,
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whence

x=exp{t 5 {pryar}. (2.3)

The condition of applicability of this method is clearly the following:

IRLEE dX(r)|<1_ (2.4)

T | T | dr

|7

Here x is the de Broglie wavelength of the particle (k (n= T(h;)—) This

condition is satisfied only for sufficiently smooth potentials, far from the
points where p (r) is zero (the turning points). For real potentials,
condition (2.4) holds true in a wide range of r values.

In the classically accessible region B >V (r) (i.e., E> U (r)), the two
independent solutions may be written in the form

r

sclr; {%S p(r) dr’}, (2.5)

i, e., both solutions are oscillating functions. The frequency of these
oscillations increases as the difference (#* —V (r) becomes greater.

The case k* <V (r) corresponds to a classically inaccessible region,
where E < U (r). Here, p takes on imaginary values p = ijp| and the two
independent solutions are the monotonic functions

r r
L $ipear - 5§ toenar
To Ts

% =e B e = e (26)

To summarize:

In the classical region, the Sch. Eq. has two oscillating solutions. The
frequency of oscillations increases with increasing difference k& —V (r).

In the nonclassical region, the Sch. Eq. also has two solutions, but they
are both monotonic. One of these solutions decreases from the point where
B =V (r) and the other increases.

§ 3. LOW-ENERGY BOUND STATES

Consider the Sch. Eq. with U (r) < 0. Note that in this case the funda-
mental distinction between classical and quantum mechanics can be formu-
lated as follows. In classical mechanics any arbitrarily small potential
well is sufficient to bind the particle; the particle will rest at the bottom
of the well, which corresponds to a solution with E = Unin << 0.

In quantum mechanics, in the three-dimensional case, we are dealing
with certain critical conditions for the existence of at least one discrete
level; for such a level to exist, the well should be sufficiently "'wide and deep"'.
This result is clearly traceable to the uncertainty principle: a particle is
bound by the potential U (r) if it remains a certain proportion of the time
in a region where the potential is negative, but not zero. The localization
of the particle in space, however, implies an increase in its mean momentum
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and mean kinetic energy. Therefore in a shallow and narrow well it is
impossible to construct a solution with negative total energy, and not a
single discrete level can be accommodated, *

Of considerable importance are the conditions which prevail when a
discrete level has just formed, i.e., when the depth and the width of the
well are close to their critical values. A characteristic feature of the
solution in this case is that the particle remains a very short time in the
well {this time goes to zero as the well approaches its critical dimensions),
and the properties of the solution are not oversensitive to the form of U (r).
A situation of this kind is encountered, say, in the theory of the deuton,
which is a bound proton —neutron state /21/.

Let us first derive the condition for the existence of a discrete level
"

in a "rectangular well", i.e., in a potential of the form
hﬂ
U=—Uo=—2?Vo for 7<R,l (3.1)
U=0 for r >R.

The Schroedinger equation (1.6) takes the form

YA (—x3+ V=0 fOI‘f<R,} (32)
YV—nh=0 for r >R.
Here we use the notation x = — ik. Since we are concerned with bound

states, whose energy is negative, %k is a pure imaginary number (k¢ = ijk|),
so that x is real, %= |k
The solutions of {3.2) satisfying the boundary conditions are

y=BsinKr, K=VV,—»* forrR } (3.3)
X = Ae for r >R.

Equating these functions and their derivatives at the matching point r = R,
we find

BsinKR = Ae*R, } (3.4)
BKcos KR = — xAe™R.

We can now determine the potential — U = U;required for the formation of
a bound state. The energy of a state which has just formed is clearly zero.
Therefore putting x = 0 in (3.4) we obtain

22
VViR = —‘;—; V1="T—17; U= sn—”fﬁp
The dependence U,~ R™? is quite general, and is not specific of a
rectangular well only. Indeed, suppose that for some U (r) the Sch., Eq.
has a solution ¢ (r) with a given energy E. Try a substitution ¢ (r) =¥, (r) =
= o' (ar). The factor o' before ¥ is so chosen that the wave function
remains normalized; as the Sch. Eq. is linear, this factor cancels out.

*  This argument is not quite conclusive, as in principle it is applicable also to the one-dimensional and
two~dimensional case, when a discrete level exists irrespective of the well depth and width, Also note
that any shallow well will acquire a discrete level as soon as an arbitrarily weak magnetic field is turned
on /20/,
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To identically satisfy the Sch, Eq. with the new ¢, we should make the
substitution E — E;, = «’F and U (r) - «*U (o), Since

g A (ar) + a¥ (— U (ar) + E) p (ar) = o [% Aey—U (ar) + E| 9 (or) = 0.

Thus, a contraction transformation (&> 1, the characteristic length
is a') is accompanied by an increase in all energies by a factor ~d* i.e.,
in inverse proportion to the square of the linear dimensions. The physical
reason for this is that the momentum is inversely proportional to wave-
length, so that the kinetic energy is inversely proportional to the wavelength
squared.

Consider the case [%*|<€V,. We will calculate the probabilities w, and w,
for the particle to be found inside the well (r < R) or outside the well (r >R),

respectwely These probabilities are proportional to w1~S 3dr and
w,~§ ¥*dr, and their sum is w, +w, = 1 by normalization condltlon

Ignoring »* compared to V, in the radicand in (3.3) and taking VV,R = %
we find

o (3.5)
ws

Ty
2 Vo

Thus for % — 0 the particle remains most of the time outside the well,

The mean potential energy is
= SUlwI’dr~—% M YV = — wiUs.
The expectation value of the kinetic energy is
T = Z%S|V¢|’drz%;mi VYVl = + iU,

Since |U|> |E|, T > |E|, the binding energy e = —E =— (U + T) is a small
difference between two large numbers. In order to find Easasum U+ T,
we should compute the higher terms in the expansion of U and T in powers
of »%V,, which is left to the reader. *

For a given R there is a certain critical U, such that £E = 0, Let us now
gradually make the potential well ""deeper'' and see how the binding energy
changes.

Using the perturbation theory, we find

= ~2y lEL
dE=wdl =35 H—dU.

® It is readily seen that in the one-dimensional case, for

*Vos 0, wrfwyz %3V, = 4VoRY, U = — M3/2m,

we haveT =~ _12. %’. |0l i.e.. T «€|U]. so that there is always a level with energy Ex~U = — ;_’AV.,“R’.
m
In the two-dimensional case a bound level also always exists, but the binding energy cannot be found

in this way, since then T~ |U|and E = T — | U | is an exponentially small number,

10
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Hence

_nd e _p_™ (U=
—2dV—E—7m. e=—E = W=D (3.8)

Uy
The binding energy as a function of well depth thus has a characteristic
singularity: at the point where the level forms, it is tangent to the abscissa
axis (Figure 1). This is a general conclusion
independent of the particular form of the
potential U (r).
Let us now consider a particle which
occupies a bound level with £ = —|Ej| or
L scattered particles with energy of the order
4, Vi of [Ey]. The well depth is ‘as.s,u‘lmed to be large
compared to |E,|. In the limiting case as
Ey/U — 0 the theory is essentially simplified,
Here for a fixed E, we make |U| go to infinity;
moreover R — 0 in such a way that |U|R? — const.

The particular situation which develops during the formation of a level
thus settles the question of the properties of the solution for a singular
potential with | U | — oo and R — 0 for fixed binding energy.

The solutions of the Sch, Eq. and their derivatives should remain
continuous for r = R:

FIGURE 1.

Y1 = Y3, ;j—“,h= d;:’.

These two conditions can be rewritten in the form

1 1 d
=t = for r=R,
The first condition is trivial, since the equation is linear and any ¢, which
does not meet the first condition can always be multiplied by a constant C

such that C¢, |;ar = slr=r. This will not affect %%‘-, however, so that the

second condition is not trivial,
By matching the solution inside the well with the solution outside the well

[ad . : i s
¥»s ~ ——, we find for r = R (and in the limit as R—0, for r= 0)

d:;:x-"-:—xo. (3-7)

It is significant that in the limit as R — 0 interchanging E,and E (which
involves a small change in energy compared to U,) does not affect the wave
function r << R, and thus does not change the boundary condition (3.7) either.

A deep potential well is thus described by the value of d;‘:x at the well

boundary, this being a general property of the Sch. Eq.

Consider as an example the solution of the Sch. Eq. for a continuous
spectrum of positive energies (in more detail this case is treated in
Chapter 2). In this case the continuum functions are changed by the
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potential well and the particle is scattered. Outside the well the equation
has the form

¥+ k=0
The general solution is thus
% (1) = A sin (kr + 6 (k). (3.8)

In the absence of a potential well, we should have % (0) =0, so that § =0,
For a particle impinging on a potential well, we match the solution (3.8)
with the solution inside the well, which gives

=kcot §=—xy &= tan-! (_L), (3.9)
-

*o

diny
dr

The linearity of the Sch., Eq. is responsible, to use mathematical
terminology, for the group property of the solutions: any solution can be
multiplied by a constant and still remain a solution. Using this group
property, we can lower the order of the Sch. Eq. and switch over to a
first-order nonlinear equation. This equation is conveniently written using

dlny
dr *

a new variable z =
Note that

dx_ dy _ (dz 9
@ = W—(W+2)X

so that the Sch. Eq. is reduced to the form

Zz—,-i—z’—V(r):—k’, (3.10)

The characteristic property of the regular solution with % (0) = 0, in which
we are interested, is that for r— 0, y () -»Crand z— % This transformation

to a first-order equation is a general property of the Sch. Eq. *

The distinctive feature of the problem with a singular potential, i.e.,
a deep and narrow well, is that #* can be dropped inside the well, so that
we have to solve the equation

ZrP—V()=0 (3.11)

and find z at the well boundary (i.e., z(R)), as it determines the solution
outside the potential well, For V — oo, R — 0 the inclusion of £ in the
equation does not affect the result for z(R).

As we have already noted, V (r) should meet a certain precise condition
if this deepening and narrowing of the potential well, i.e., the transformation

* Insome cases this transformation is quite helpful. In particular, it sometimes facilitates the determination

of scattering phases from the given potential U (r) /22/.
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V=V, () =a% (ar), is to leave the binding energy - E(and thus z(R)) finite.
This condition is not written in explicit form, and it is only formulated
as a constraint on the solutions of the Sch. Eq. If this condition is not
satisfied, then |E{— oo and 2z (R} — oo for a—» co.

The parameter a = —-:—[,=R is called the scattering length, *

We have seen that z < 0 whenever a bound state exists. The scattering
length in this case is positive. If the scattering length is negative, there
is no bound state.

The entire theory of this section is not restricted to the lowermost
energy level: in principle we can think of a case when the lowermost level

(the wave function y,) lies very deep,

E ~ U, and it is the second level y. which
is a ''resonance'’ level close to the free
states, The corresponding wave functions

X, are shown in Figure 2,

In principle, resonances are also
r possible in a state with /s 0, In this case

t = there is invariably a lower-lying level
V with { = 0. Note that for /< 0 the depend-
FIGURE 2. ence of the scattering phase on E and the

dependence of E on (| U|— U,) differs from
that described by the above formulas
for 1 = 0, We will not discuss this problem, however.

The two principal cases when the true potential U (r) can be replaced
with adequate accuracy by the limiting potential U - o0, R— 0 are encountered
in nuclear physics. The interaction between a neutron and a proton with
I = 0 produces a bound state (a deuton nucleus) with binding energy of 2.2 MeV
if the spins of the particles are parallel. This state can be described by
a potential well whose depth U, is about 36 MeV and radius R =2-10"3cm.
The second case of proton —neutron interaction with antiparallel spins is
characterized by z> 0. No bound state forms in this case, The parameter

X

hz—f:, called the virtual level energy, is equal to 0.07 MeV. The correspond-

ing well parameters are U,~18MeV, R=2.5-10"%cm, Thus, the theory
of singular potential is perfectly applicable to scattering of neutrons with
energies of up to 1 MeV by protons.

§ 4. A PARTICLE IN THE FIELD OF SEVERAL
SINGULAR POTENTIALS

In the preceding section we saw that the problem of motion of a particle
in the field of a singular potential can be formulated in the language of
boundary conditions imposed on the wave function at r =0, The general
solution of the Sch. Eq. for small r and ! = 0 has the well-known form

¢=a+%, x=ry=oar+B. (4.1)

* This concept was first introduced by Fermi /23/.
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If we are dealing with smooth potentials, the constant B is taken equal to
zero. This is not so, however, for a singular potential, and the boundary
condition establishes a certain relation between the constants a and B:

1 = _ 4.2
F=72 (4.2)

where z is a characteristic of the potential,

This approach is highly convenient for solving problems with several
potentials.

Consider, for example, the case of two potential wells with given z,

gituated at the points r, and ,. For a given energy E = — E;—;‘;, the solution
is sought in the form
gxir-nil el
V=T = (4.3)

Near r=r,, putting r; = |r; — r;] and series expanding the first exponential,
we have

1 e/

x+ . (4.4)

r—ry| I

V=7

Hence,

— %, (4.5)

This transcendental equation for » enables us to find the binding energy of
a particle in the field of two potential wells, In particular, we see that for
z>0 (i.e., a well which alone cannot bind the particle) two sufficiently

close wells will produce a bound state; the critical condition is ry = —:—

for = 0.

Now consider the case of an infinite number of wells distributed
in space with a density of p wells per cubic centimeter.

By analogy with the case of two wells, we have

—x|r—-r;

¢=§i}ﬁ—_ﬁ. (4.3")

The parameter % is found from the condition

—Xra:
e M

(4.5')

Z=—-%+2
R

.
N

The sum is replaced by an integral assuming that xi is much greater than

the distance to the nearest neighbor, —i > ple

z=—x+psi.;—idr=—n+4np%- (4.6)

A similar wave function was used in the problem of pion scattering by a deutor in the momentum
approximation /24/, and in collision problems involving negative ions and neutral atoms /25, 26/.

14
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This equation, unlike the preceding case of two wells, always has a
solution with x>0, for any p and z. Since l/x > p~* we can drop » compared
to 4np/x*. This gives

Wednpl: E=—tnpl X (4.7)

and the constraint 1/x > p~ now takes the form %<p—'h. The entire treat-

ment corresponds to the case z >0, when a single well does not have a
bound level.

We see that a system of wells distributed with a given density gives
rise to a negative energy state. This energy is the same as if each well
were replaced by a slowly varying potential U (r) (whose variation is slow
compared to the distance between the wells) satisfying the condition

{Oyar=—tng. 5.

Then the potential at any point, Z:ﬁ (r—rJ), is constant throughout the
entire volume, being equal to

» 1

This is also the energy of a particle at rest in the field of this potential.
This is the method for finding the slowly varying pseudopotential*
and the small potential (to which the perturbation theory is applicable)
whose action on a particle is equivalent to that of a singular well.
We should stress that the pseudopotential  cannot be found by simple

averaging of the potential U (r): Uy = p Sl Udr. Thus, in the case of an
V.-—.—

attractive potential (U< 0), the pseudopotential is greater than the average

potential, {&|> |U. |, this being due to the increased probability of finding

the particle in the region where the potential is different from zero.

This result emerges with particular clarity when U~ f—;’—t for R—0.

Then U,, = const pR — 0, whereas the pseudopotential U does not approach
zero. In the case of a repulsive potential (U > 0), |U| < |U.J and inthe limit

U > oo, R-»O.a-v-i—, 0 ~ const-R — 0, whereas for U-eomt-;’" and N>3

the limiting value is

Using the concept of a pseudopotential, we can easily find the refractive
index of matter.

® This concept was first introduced by Fermi /23/. The applicability of the perturbation theory is considered

in detail in Bethe's paper /27/ (p.123) and in /28/.
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Let a particle with small but finite energy E = ;—;lbe incident from vacuum

into a medium characterized by pseudopotential U (see (4.8)). For the
kinetic energy T of the particle inside the medium we have

T & 1\ (Mkay
T—E-U="m 1+ %) =%

Hence an expression for the refractive index of the material:

n’=1+——=1-——k7—a. (4.9)

Note that a well without a bound level ( U > 0, say) nevertheless pro-
duces effective attraction; the corresponding pseudopotential is always
negative, and the parameter z for U -« and fixed R monotonically

approaches % .

Conversely, a well in which a bound level has just formed may capture
a particle on that level., The other free particles, however, see this well
as a center of repulsion and its pseudopotential is positive. This is the
reason, for example, for the reflection of low-energy neutrons off the
surface of graphite and beryllium at any incidence angle, up to the case
of normal incidence. This effect opens an interesting possibility for cold
neutron storage in a graphite container /29/.

As the well is made deeper, while its radius remains constant, the
parameter z drops to minus infinity, then increases to plus infinity and
eventually decreases reaching zero at the time when the second level is
formed. This indicates that a change in well depth causes oscillation of
the pseudopotential,

§ 5. COULOMB POTENTIAL

The theory of a particle in a Coulomb field was developed in great
detail and can be found in any textbook. The monograph by Bethe and
Salpeter /30/, for example, contains a wealth of information on the
subject and a summary of published results up to 1959 inclusive.

In this section our aim is therefore not to present new results, but
to examine the well-known facts from a different angle.

In the nonrelativistic approximation, when the relativistic corrections,
the electron spin, and the higher approximations of quantum electro-
dynamics are ignored, the Hamiltonian of an electron in the Coulomb field
of a nucleus of charge Ze is

an Ze
H=—s-A—=—, (5.1)
and the energy levels are given by
Ztm 1 E,
En=— G w=—g (5.2)

16




§ 5. COULOMB POTENTIAL

Here

Z%Am

Eo = i

=272%eV.

We know from the elementary theory that the levels of a hydrogen atom
are degenerate: for a given n, there are levels with / ranging from 0 to
n— 1; all these levels with different | have the same energy. This is known
as "accidental' degeneracy, * as no such degeneracy is expected in the
general theory of an arbitrary spherically-symmetric potential.

What new effects are associated with the accidental degeneracy ? One
of the best known is the linear Stark effect in the hydrogen atom: the excited
hydrogen atoms, i,e,, atoms with n>>1, may have different energies in
the electric field. These atoms form a multiplet, the energy splitting
being proportional to the electric field &:

E,
E=—¢+ka|8], (5.3)

where k goes from - (n—1)to (n —1). Thus, for instance, the level with
n = 2 is split into three sublevels,

The linear dependence of E on |&| signifies that the excited hydrogen
atoms have an electric dipole moment: the energy of a neutral body with
dipole moment d in an electric field & is — d&.

In § 1 we have demonstrated in a general way that an atom has no dipole
moment, What is happening here then? States with a definite [ in a Coulomb
potential have no dipole moment. But here on account of accidental degen-
eracy we have, say, E,, = Ey = E, (the first index is the principal quantum
number, the second index is {). Therefore a superposition of solutions
with different I and the same nis also a solution corresponding to a given E,.

Consider the states

'-‘71:2:(’4?2,0,0-{- 1‘)2,1,0) and % (W:,o,o—lba,l,o) . FH (5.4)

These are states with energy E, and dipole moments of +3eaand -3ea,
respectively, pointing along the z axis. Finally, %.,, and ¥;;,.,, as well as
any superposition (linear combination) of these functions, are two states
with energy E, and zero dipole moment.

Thus, from the four degenerate states (one 25 and three 2P) we may form
without any electric field two states with a dipole moment and two states
without a dipole moment, all having the same energy.

In an electric field the level with n = 2 is split into three levels,

States with dipole moment do not have a definite parity, since they are
formed as superpositions of states of opposite parity.

®  As distinct from the degeneracy of levels with fixed { and various m, which is a consequence of the
invariance of the Sch. Eq. under three-dimensional rotations. Group-theoretical derivation of (5.2)
and some consequences of the "accidental” degeneracy are given below.

These states arise when the Sch. Eq. is solved for a Coulomb potential in parabolic coordinates.

Note that the variables are separable in this case in the elliptic coordinates too. This possibility of
the separation of variables in different coordinate systems is one of the consequences of accidental
degeneracy; different coordinate systems correspond to different complete sets of commuting operators
(commuting with the Hamiltonian and between themselves).

.
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In a non-Coulombic potential, we may take a superposition of two
solutions with different /, but these solutions will also have different
energies. The time-dependent wave function therefore has the form (the
subscript corresponds to /)

iEdt _ iEgt

Vi =ve(r)e " +galr)e P (5.5)

For E,= E, the dipole moment calculated using this wave function

2nk

E—E,» and the time-average dipole moment is

oscillates with a period of

identically zero.

Classical-mechanical arguments readily show why the Coulomb potential
gives rise to a dipole moment,

Classical orbits in a Coulomb potential are Keplerian ellipses, with
the source charge in one of the foci of the ellipse (Figure 3). At the
""aphelion" (the farthest point) the electron moves more slowly than at the
"perihelion" (the point closest to the proton), In case of Keplerian motion
of the electron, the hydrogen atom on the average has a dipole moment;
the time -averaged position of the electron r corresponds to a point on the
semimajor axis lying midway between the center and the second focus
of the ellipse.

FIGURE 3, FIGURE 4.

Now consider the case of a non-Coulombic potential; for example, the
potential set up by the sodium nucleus and the 10 inner electrons is not a
Coulomb potential, so that the eleventh outermost valent electron in a
sodium atom moves in a non-Coulombic potential. In a non-Coulombic
field the classical orbit is not closed* (Figure 4), i.e., the major axis of
the ellipse turns (precesses) around the focus. This classical picture is
fully consistent with the quantum result: the dipole moment oscillates and
averages out to zero in time,

The four wave functions with n = 2 can be chosen in a different way,
so that each of the four orthogonal states has dipole moment of the same
magnitude, the directions of the dipole moment vector corresponding to
the four corners of a tetrahedron with the nucleus at its center,

* Note that according to Bertrand's theorem /31/, the Coulomb potential and the potential of a harmonic
oscillator are the only spherical-symmetric potentials in the three-dimensional case which admit of
closed orbits, (In this connection see the interesting remarks of Fhrenfest /32/ on the uniqueness of the
three-dimensional case compared to other cases.)
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Let & (i =1, 2, 3, 4) be the four three-dimensional unit vectors pointing

from the center of the tetrahedron to its apexes: IJ;= é—dq— % We also

introduce the following notation:

Yo = Pa,000 9 = (Pxr Pyy V2)s P = -‘%—2— ($2,1,1 4+ ¥s,1,-1)s
Py = ﬁl— (2,1, 1— W2, 1,-1)s 02 = ¥s,1,0-

It is now readily seen that the four functions

Y = 3 (b + V319) (5.6)

have the desired properties.

These wave functions (the so-called o-electrons) are the zeroth approxi-
mation to the chemical bond of a carbon atom with other atoms. The carbon
atom has precisely four electrons with n = 2, We know from organic
chemistry that the covalent bonds of carbon are indeed directed to the four
corners of a tetrahedron /33/.

We can now proceed with the derivation of (5.2), Our method will be
somewhat unusual, as we will derive E, by an entirely algebraic technique, *
Note that Pauli /34/ derived this formula roughly in the same way long
before the formulation of the Sch. Eq.

First note that (as we know from classical mechanics) the angular
momentum vector is not the only conserved vector in a Coulomb field:
the so-called Runge —Lenz vector /35, 36/, which is directed along the
semimajor axis of the ellipse, is also conserved:**

-—Vm(—af+LipL), o=Z. (5.7)
It is readily seen that the operator
A= —Vm(—a-L + 5 (ipL1— ILp)) (5.8)

commutes with the Hamiltonian [4, H]= 0, and therefore the operator A
is a quantum-mechanical generalization of the vector A. The commutation
relations for the operators L; and A; have the form

[Li» Lj] = ieyjale, [LiA}) = ieyads, } (5.9)
[As A[] = — 25”81”1.‘.

Let us now consider states with fixed negative energy. For these
states we may treat H = E as a constant negative number, replacing 4,
by the operators N;= (—2H)”»A;. Relations (5,9) take the form of commutation

¢ If the reader finds the following argument too abstruse, he can safely omit the remainder of this
section,
** In a historical aside we should mention that this integral of motion was already known to Laplace /37/,
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relations for the generators of the rotation group of the four-dimensional
Euclidean space, 0(4) /38/:*

[Ley L) = igyale, [Liy Nyl = ie;ulNy, } (5.9')
[Niy N = iejele.

Note the following important identities satisfied by L; and ¥;:

Ey Z%4
IN=NL=0, L*4+ N*+ 1 = — 2% Eo= =5, (5.10)

At this stage we introduce two new vector operators

J(l)_‘_%(L_i_N)‘ 1(2)=';—(L—N)7 (5.11)

commuting like the angular momentum operator for the three-dimensional
rotation group O (3); J® and J® also commute between themselves:

[, J;”] = isgpd i, e, IP] = ieid @, (5.9")
e, JP1=0.

Hence it follows that the eigenvalues of (J&2)? are j, (g + 1), and by (5.10)
U= Wy = EEE = 4 1), E=H = — (5.12)

4 VIV ES

Comparison of (5.12) and (5.2) shows that

n=241, j=jh=jh=="71. (5.12")

It also follows from the preceding that the degree of degeneracy is
@h+ 1) @+ =@+ 1) = n’.

We know that the transformation properties of functions under the
group O(4) — the four-dimensional rotation group — are completely
determined by the numbers j, and j,, i.e., the eigenvalues of the operators
(JWY and (J@)? (or the operators L?+ N? and LN). If j, and j, are known, we
say that the functions are transformed according to the representation
D (jy, jo) of the group 0 (4). In our case, the wave functions for a fixed
n—1 n—t

2 T)

As we have noted before, in the degenerate case for a fixed energy
E < 0 we may consider different systems of wave functions. For example,
in the usual case of the separation of variables in spherical coordinates,
the corresponding wave functions VY. (r) are the eigenfunctions of the
operators H, L* and L,. We may consider, however, the eigenfunctions
of the operators H, J¥, and J®. These functions Yuss arise in the separation
of variables in parabolic coordinates /40/; here &, and k, are related by the

E = E, transform according to the representation D (

* In the n-dimensional case, relations of the form (5.9) and (5.9') take the form of commutation relations
for the generators of the group O(n+1) /39/.
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following equalities to the numbers n, and n,, which are generally used with
parabolic coordinates:

kl: _;_(m-.i—nl—-ng), kz=%(m_nl+n2)y
—k<h, ka<h, k= n_z-

L m+n+|mi+1=n.

Since L = J® 4 J® the transition from one method of description to another
reduces tothe famous problem of composition of two angular momenta j, = j, =
= "7_1 = k. Adding up these momenta we find that for a given n, [ takes on
values from 0 to n—I1. It is also easily seen that Ywm and Yaes, are related
by /41/

Yaim = . Z (kklv kkz“m) ‘bkhkn

1+ky=m

24 (5.13)
Vekpy = lgm (kky, RRo|lm) $nim,

where the numbers (jym, j.my|jm) are the Clebsch —Gordan coefficients.

We have thus established that the Sch. Eq. is invariant under the group
of four-dimensional rotations, and that this invariance completely accounts
for degeneracy of energy levels. Therefore, the term "accidental
degeneracy is not quite to the point,

We have so far concentrated on a somewhat formalistic treatment and
made no attempt to determine the explicit form of the wave functions.

Let us now transform the Sch. Eq. following Fock /42, 43/ to a form
invariant under O (4). The Sch. Eq. in the momentum representation
has the form

(B2}t — 2§ -0 10

We will consider the momentum space as a stereographic projection of
a four-dimensional space, introducing new variables

R—" 2pp __5 5.15
Are’ PThage BTES = VZmlE, E=—5%.  (5.19)

fo=

Changing over to a new wave function

$ (B = (0 + p)% (D), (5.16)
we obtain the equation
04y $E&)  _ _ am
v (@) 2,,.S g E—EF =0, 1=—-. (5.17)

Fock has noted /42, 43/ that this is actually an equation for four-dimensional

spherical functions Y, (§), and the corresponding values of the parameter q
are thus equal ton, *

® Itis clear that in case of attraction (n>>0), En=— a;n:. and in case of repulsion (1 < 0) no bound states
are observed,
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We have thus obtained the following result: the wave functions of the
Coulomb problem have the form

$uim (P) = Chim (p’ + po’).ynlm 43] (5.18)

(here Cum is a normalization constant).

It is significant that the wave functions of the discrete spectrum turned
to be proportional to four-dimensional spherical functions, The theory
of these and general n-dimensional spherical functions is treated in con-
siderable detail in /44, 45/, where the explicit form of these functions can
be found,

Note that by using wave functions in the form (5.18) we can derive
explicit expressions for certain sums encountered in the theory of the
atom [42, 43/ and find an elegant representation of the Coulomb Green's
function for E< 0 /46/.

The functions of the continuous spectrum have similar, though somewhat
more complicated properties. The main distinction from the case of a
discrete spectrum is that the four-dimensional sphere of our analysis is
replaced by a four-dimensional two-sheet hyperboloid and the finite -
dimensional representations of the 0 (4) group are replaced by infinite-
dimensional unitary representations of the Lorentz group. Detailed
treatment of the continuous spectrum can be found in [47/. Note that
similar symmetries are also observed for a Coulomb potential in n-
dimensional space /47, 48/.

§ 6. THREE-DIMENSIONAL OSCILLATOR

Consider the potential

v=2", (6.1)

with &> 0. This potential does not satisfy the condition U () = 0.
Therefore to real physical systems it is applicable only to some approxi-
mation, as long as r is not excessively large; at great distances, the
real potential inevitably deviates from (6.1).

This potential is nevertheless used in nuclear physics, e.g., in the
shell model of the nucleus /49/ and in the collective model /50, 51/.

An important property of this potential, which remains valid in the
one-dimensional case too, is that its levels are equidistant. This leads
to an immediate analogy between the excited state of a single oscillator

with energy (n + —12—) fio and the state of a system comprising n identical

particles each of energy ko. This analogy is the underlying basis of

what is known as the '"'method of second quantization'', which is concerned

with processes involving a variable number of particles. In particular,

various properties of electromagnetic radiation are found to coincide with

the properties of an ensemble of quantum-mechanical oscillators.
Further, the radiation from a large system of two-level particles (this

is the model generally used in the theory of lasers) can be reduced to the
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§ 6. THREE-DIMENSIONAL OSCILLATOR

radiation from one oscillator in many-dimensional space. The energy
levels of this oscillator are degenerate, like the levels in a Coulomb
potential, We will consider the case of "accidental” degeneracy for a
three-dimensional oscillator.

The solution of the Sch. Eq. with potential {6.1) is sought in the form

P (1) = (1) $a (%) ¥y (xs). (6.2)

Each of these functions satisfies the one-dimensional Sch. Eq. with a
harmonic oscillator potential. The total energy is the sum of the energies
corresponding to motion along the three coordinate axes,

E = E1+ Es + E;, E,=(n,+—é—)hm,

(6.3)
E=(n1+ﬂ,+ﬂa+%)h0, w= |/ % .

The energy levels of a three-dimensional spherically symmetric

oscillator are thus degenerate. The general expression for the energy is

En= (n+%) ko,

where n is an integer. The degree of degeneracy, i.e., the number of
linearly independent solutions with the same energy, is equal to the number
of ways in which n can be split into three non-negative integers. We con-
struct an equilateral triangle with n units per side and draw a grid which
divides the triangle into small triangles of unit side. The distance of each
grid point from the sides of the large triangle is an integral number of
heights of the unit triangles. The sum of these three integers is n. The
degree of degeneracy N is thus equal to the total number of grid points,
including those along the three sides of the large triangle (for these, one

of the three quantum numbers is zero) and at its vertices (where two quantum
numbers are zero and the third is n). The total number of grid points is
readily seen to be equal to

N=w_ (6.4)

According to a general theorem, the levels in a spherically symmetric
potential U = 52'—' can be clagsified according to the orbital momentum / and
its projection m,

A state defined in the form (6.2) by three quantum numbers ny, n,, n, in
general does not have definite !/ and m. A useful exercise is therefore to
observe how linear combinations of states of the form (6.2) give states with
definite { and m.

For n= 0 there is but one state and it is readily seen to correspond to
=0,

For n = 1 there are three states, It is readily verified that their linear
combinations give precisely three states with [ = 1. Here ¥, (x1) ¥y (%2) 1 (xs)

is a state with I =1, m= 0; 1‘;"—2 by (62) $o (%) = o (1) by ()] Po (xy) 1S 2 state
with =1, m=1%1,
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Ch.1, THE DISCRETE SPECTRUM

For n = 2 there are six states. They can be combined to form one state
with I = 0 and five states with /= 2, m taking all values from 2 to -2.

In the general case, to each n corresponds a range of states with
l=nl=n—2 Il=n—4,... upto [=1o0r =0, depending on the parity
of n. Each ! occurs once and only once.

In a three-dimensional oscillator, as in a Coulomb potential, levels with
different !, say {= 2 and { = 0, are thus degenerate.

We will now show that in this case, as in the case of a Coulomb potential,
the Sch. Eq. is invariant under a wider transformation group than the
group of three-dimensional rotations /52 —54/.

Consider the operators*

@=vrb—a) o=zl

(6.5)
*; 3
= =’ Xg = )

which satisfy the commutation relations

lar, a; 1 =8y, la;, aj) = lat, a;] =0. {(6.6)
The Hamiltonian now takes the form
2 1 3 3

H=ﬁ‘”2(afai+i)=h‘°[z a;‘a,-}-—z—]. (6.7)

=1 =1

It is readily seen that the Hamiltonian (6.7) is invariant under the unitary
transformation

3

3
&—>a; =3 uya;, a}—>ar =Y upaf, (6.8)
=1 =1

or, in other words, the Hamiltonian of a three-dimensional oscillator is
invariant under the group of third-order unitary matrices, the U (3) group.
The corresponding group for the n-dimensional oscillator is readily seen
to be the group U(n).

We now introduce the operators A} = ajq,. They commute with the
Hamiltonian, [4}, H], and also satisfy the following commutation relations:

(AL, ALl = 84} — AL (6.9)

These relations coincide with the known commutation relations for the
generators of the U (3) group /55, 56/, whence the conclusion that Alis a
generator of this group.

Consider the combination

3
A= Ai= g5 H— 1.

=1

® If you are familiar with quantum field theory, you will readily recognize in these operators the creation

and destruction operators of oscillation quanta.
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§ 6. THREE-DIMENSIONAL OSCILLATOR

Since A for obvious reasons commutes with H and with all A4}, it is worth-
while to separate it from the other six operators Af.
We thus introduce new operators

Bi=Al— L4, SB=o. (6.10)

These nine new operators, eight of which are independent, commute as
before, but on account of the identity IB!= 0 they are generators of SU(3),
the group of third-order unitary matrices with unit determinant. * Note
that the usual rotation group, 0(3), is contained as a subgroup in SU(3).
The representations of SU(3) are well known: they are fully characterized
by two numbers p and ¢. However, not all the representations of this
group are realized by oscillator wave functions., Indeed, as our problem
is concerned only with one species of operators 4, we can form only
functions of the symmetric tensor type. These functions are transformed
according to the representation D (p, q) with p=a, ¢=0. The degeneracy
and the range of the orbital momenta ! in a state with given energy can
therefore be derived from the general relations of group theory. The
treatmenton p.23, however, is quite sufficient for our purposes.

Note that accidental degenracy is directly responsible for the fact that
the classical path of an oscillator is a closed curve — an ellipse centered
at the origin.

What is the reason for the relation between the closed classical paths
and degenerate levels with various /? A classical particle occupying a
definite point with definite values of the angular variables 6 and ¢ is
described in quantum mechanics by a wave packet, i.e., a superposition
of states with various /. In the nondegenerate case, the phase relations
between the states with various ! change in time and the wave packet
gradually spreads in space in accordance with the classical conception
of motion in a trajectory of the form shown in Figure 4.

Note that the degeneracy of levels with various m for a given I, which
is observed in any spherical-symmetric potential, corresponds to the
classical theory of the exact conservation of the orbital plane.

A characteristic distinction between the degeneracy in an oscillator and
the Coulomb degeneracy is that the degenerate levels in an oscillator have
the same parity, equal to the parity of a.

To establish this point, note that the solutions of the one-dimensional
problem have a definite parity, equal to (—I)*(n=1,2, 3,...).

It follows from the preceding that a superposition of oscillator states with
different [ but equal energy also has a definite parity, so its dipole moment
is zero. It is thus impossible to form a stationary state with d = 0. This
conclusion is also quite understandable from the classical standpoint, as
the oscillator trajectory is symmetric about the origin.

Finally let us consider the case of a one-dimensional oscillator in
application to the so-called problem of ''coherent states' (we follow the
treatment of /60/). Various important properties of these states were
studied in Glauber's classical paper /61/, to which the reader is referred
for further details.

This group is being currently used as the symmetry group of strongly interacting particles /57, 58/;
numerous theoretical problems associated with this group were therefore resolved by physicists, Analogy
between the symmetry of strongly interacting particles and the symmeury of the oscillator is discussed

in Dyson's remarkable paper /59/.
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Ch,1, THE DISCRETE SPECTRUM

What makes the coherent states particularly important? The main
feature, as we shall see in the following, is that their properties are very
close to the classical properties. Introduction of these states apparently
provides the most natural description of the coherent properties of a light
beam (e.g., a laser beam) in quantum mechanics. These states are also
useful for treatment of soft quanta.

Let the oscillator be in some state n, where it is described by wave
function ¢,. Following Dirac /62/, we designate this state by |n). States
of this kind, i.e., the conventional stationary states, are not suitable for
passing from quantum mechanics to classical mechanics, as the mean
coordinates and the mean momentum in these states vanish, *

xa () =(n|x|nd =0, pa () =<n|p|nd =0, (6.11)
whereas in classical mechanics
x () = A cos (ot — ). (6.12)

Let us try to find a state |$, ) such that

X () = o ()] x|%a (). (6.13)

A Sultable state is foulld to have the fOI m
ay)=e E ~ P =|& (6 . 1 4)

The average number of oscillation quanta in this state is

n= %lq.-, (6.15)

and the probability P.of finding an oscillator in the state |n) is given by
the usual Poisson distribution

Puley = B i (6.16

It is further readily seen that in this case

—_ A —
(Ax) =g —~ 2V = 5, (Ap)* = p*— " = '—'—’!29—

L
whence

Av-Ap =%, (6.17)

i.e., the uncertainty relation for the coordinate and the momentum has its
minimum value in this case.

® ‘This is the general property of stationary states of the discrete spectrum,

**  These states were first considered by Schroedinger /63/.
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§ 6. THREE-DIMENSIONAL OSCILLATOR

We will now prove our propositions. Expression (6.,13) can be rewritten
in the form

x (@) = bt 0] (O] 0)) =

= Xo {Par (0)| aet + a*eivot|y,, (0)); (6.13")
here
X (t) = etft gg-ift — % (Geiot + g*eivt),  x, = ’:m .

It is readily seen that condition (6.13) is satisfied for states |z} such that
alay =alay, (6.18)

where o = pe® is a complex number,
Indeed, for such a state we have

<ali (Bl =% (aeet + areioti(alay = VIxgpalay cos (of — g). (6.19)

We now expand the state [a) in states|n):
[as = 3 <nlas|ny. (6.20)
n=0

Left-multiplying (6.18) by <al| and using the identity <nla= Ya + 1 ¢a+ 1|,
we find

et ey = < njed,
so that

— 2 - S
<"l“>"'ﬁ <o|a), Ia>—<ola>’§ﬁrln>' (6'21)
<0{a) is found from the normalization condition for the state |a):

®
@lay=1, [Ofad] 3} & =[O]a) e =1,

n=0

whence follows (8.14),

It is now clear that the eigenvalue o has the form a = (#)%e’, It would
therefore seem that there exists a representation g = (r)¢®, where ¢is a
Hermitian operator; it was shown in /64/, however, that no such operator
exists.

@

We now substitute in (6.14) |n) = —V—)_T[0>; then

n

0o

e s
jay =¢ nz‘;‘f_l)'fl())ﬂ vt “+|o>, (6.22)

ne=g

1
This identity is readily obtained from the fundamental equality | n) =V (@m0,
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Ch.1. THE DISCRETE SPECTRUM

We have obtained a simple expression for the operator which transforms
|0> into |a). This operator, however, is not unitary. Consider the unitary
operator

A (o) = era*-ata, (6.23)
Using Baker and Hausdorf's famous identity /65, 66/
oh.gB — gl AEHT14.8]] (6.24)

which is valid when [Al4, B]] = [B [4,B]] = 0, and putting 4 =aa*, B = —oa*a,
[4,B| = |a|* = p* , we obtain

L
A (a) —=erat-ata —p 2 e“"“-e‘“‘“, (6.2 5)

whence it follows directly that |a) = A ()|0).
Note that the operators A (o) have the following properties:

Al =A"(—a), AA@A@=A0@A (@ =1 } (6.26)
AC)A@=A4A@A () =1 A=) =]0).

It is also readily seen that

2, A @] =aA (), } (6.27)
At (@)aA (@) = a +a, A* (@)a*A (@) = a* + a*.

Finally, let us consider the orthogonality and the completeness of the
coherent states. We have

1

@|By=¢ 3 (Jalt+(8ln

1
z (a'[?)" o~ g UaiiEi2at)
n

’ (6.28)

N —

These states are thus not orthogonal to one another. They nevertheless
constitute a complete system of states. This can be verified by taking the
integral

Sd‘a |ay o], where o = ay + idy = pe®, d?i = da; doy.

Inserting for |a) its expression from (6.14), we find

Sd’a [ay (a| = Sp dpgdq) Lmpinl m?nf:[l 0 prtnglim=-me =

=n 2 fm) (m]%gdpzpﬁ'"e-"’=n > lmy<m).
m=90

m=0

We thus have the equality

-\ dalay cal= 3 Iny <al, (6.29)

n=0

which is in fact the completeness condition for a system of states. Using
this equality, we can expand any state in terms of the coherent states |a).
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§ 7. THE VIRIAL THEOREM

In conclusion note that coherent states can be applied to derive without
difficulty a closed expression for the transition probability of an oscillator
between two states in an arbitrary external field /60/.

§ 7. THE VIRIAL THEOREM AND ITS GENERALIZATIONS

Coulomb and oscillator potentials are particular cases of the general
power potential U = kr*, For these potentials we have the virial theorem?*
which establishes a relation between the average kinetic and potential energy.

Following Fock /69/, we will first derive this theorem from the
variational principle.

According to the variational principle, the expectation value of the
operator H for the eigenstate ¥» of H with the eigenvalue E,is stationary,

In other words, if

H‘pn = En "Pm
then H = [y*Hy dr or, better still, #*

g dvHer (7.1)
S par

for ¢ =y, + & differs from E, by terms of the order (§y)?; terms of the
order & vanish. In particular, for ¥, corresponding to the lowermost
(ground) state the assertion is that the substitution $ = 4, gives an absolute
minimum H = E,.

The variational principle is best verified by expanding the variation in
eigenfunctions of the operator /:

61IJ = %wm\pm 3

using the orthogonality of the eigenfunctions, we find that the variation of #
is proportional to (6Cx).

We now write H= U+ 7, where U is the expectation value of the
potential energy, T the kinetic energy expectation value,

Consider a special kind of variation of ¢, namely an infinitesimal
similarity transformation

Y= v+ 8p=(1+3&)pi(l +erl, (7.2)

where e is a small quantity. The factor before ¢ ensures that the normali-
zation is conserved, S]ap’ [2dr’ =S|1p|’dr.

Since U = kr*, we clearly have %j= —ns.

In classical mechanics, this theorem was already known to Clausius. In quantum mechanics it was first
established by Born, Heisenberg, and Jordan /67/. Various formulations of the virial theorem and its
generalization to the case of a continuous spectrum can be found in /68/.

** In(7.1) there is no need to be concerned about the normalization of the wave function being varied.
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Ch.1, THE DISCRETE SPECTRUM

The kinetic energy is proportional to §|Vp|*dr so that contraction of all
distances increases the kinetic energy in inverse proportion to the square

of the contraction factor %T = 2e.

We now demand that 8H = 8U + 6T =(—nU 4+ 2T)s be extremum. Hence

T-rT H="12p=1E27, (7.3)
2 2 n

<l

which is the virial theorem. For a harmonic oscillator 7 = U, and for a
Coulomb interaction the total energy H in a stationary state is equal to the
mean kinetic energy with minus sign.

The variational principle provides a vivid answer to the question, "why
the electron does not fall to the nucleus?" As the electron approaches the
nucleus, its potential energy being proportional to 1/r decreases (the
absolute value of the negative potential energy increases), but in virtue
of the uncertainty principle the electron momentum grows as 1/r, so that
the kinetic energy increases as 1/r:, The total energy therefore has a
minimum at a well defined average distance of the electron from the nucleus:
further approach (''fall") of the nucleus is precluded by excessive growth of
kinetic energy.

We see from the preceding that for potentials which increase faster
than 1/r for r— 0, the Sch. Eq. cannot have a definite ground level,
and in this potential the particle will fall to the attracting center.

Another method for the derivation of the virial theorem is based on

calculation of the mean value of %(rp) = ,:— [H, rp). Tt is readily seen that
in a stationary state %(rp) = % ([H, rply = 0; moreover, an analogous

expression obtains for any operator A:

Ay =L qH, Ay =o0. (7.4)

This is a generalization of the virial theorem /70/. A nontrivial aspect
of the whole procedure is the choice of an appropriate operator A, A clever
choice may lead to some remarkable relations for mean values.

We will apply the generalized virial theorem to Coulomb and harmonic
potentials /71/. The Coulomb Hamiltonian can be written in the form

Hoe ot Bt 7.5)
where
pr =—i—rh—ai,r=——ih(§r—+%), [p:,r] = —ik,
P b=

For the operator A we choose p,rs*1. Equality (7.4) now takes the form

BT = Pty 4 (petr®y 4 .+ P, (7.6)
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§ 8. IDENTICAL PARTICLES AND STATISTICS

In (7.6) the operator r = % can be moved to the left using the identity

r*p, = p,fk + ikkrt1, (7'7)
and this gives

oy + SEL oy 4 B Ry =0, (7.8")

m

_ To simplify the last term in this expression, consider the equality
{r’ = 0 or
: —1) &
S ety +i 2 2 (reeay =,

. 7.8
Pty = —i(s—1) %(rs*). (7.8)

Expressing p, and p? in terms of r by (7.5) and making use of (7.8), we find

52

2E (s + 1) <rs + a (25 + 1) ¢rety + S (T — 1+ )y =0, (7.9)

We have thus obtained a recursion formula for the mean values of the
powers of r. This relation was originally derived by Kramers /72/ using
a different method. Note that for s = 0, (7.9) yields the ordinary virial

theorem and the term ms—(Z—:n_” <r*® allows for the fact that the operators r

and p, do not commute. Therefore its omission gives recursion expressions
for the classical case.

Let us now consider the case of a three-dimensional harmonic oscillator.
Here

m L
=g Pt g oM (7.10)

It is easily seen that relations (7.6} —(7.8) are valid as before. Express-
ing p, and p! in terms of r from (7.10) and substituting in (7.6'), we obtain

s

2E (s + 1)<ty — mod (s + 2)<ry + 2 s[ 2L — i+ p]¢rn =0, (7.11)
As in the previous case, s= 0 yields the virial theorem. Note that unlike
(7.9), relations (7.11) include only odd or only even powers of r. This is
not surprising, since the Hamiltonian (7.10) is even with respect to r, i.e.,
it does not change on substitution r — —r,

§ 8. IDENTICAL PARTICLES AND STATISTICAL
PHYSICS

The problem of motion of two interacting particles is reduced to a one-
particle problem in quantum, as well as classical mechanics.

Therefore the Sch, Eq. with ¢ dependent on the three coordinates is
applicable not only to the motion of electron in the field of a heavy fixed
nucleus, but also to the motion of a diatomic molecule, In this case we
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Ch. 1. THE DISCRETE SPECTRUM

use Born's and Oppenheimer's approximation: for given position of the
nuclei, the electrons are assumed to occupy the lowermost energy state.
The energy of the entire system, including the energy of the electrons,
which depends on the distance between the nuclei, is regarded as an
effective potential in which the nuclei move.

The solution of the Sch., Eq. for a diatomic molecule has the form
R (r) Yin (0, ), where r, 6, ¢ characterize the vector 7, from nucleus 1 to
nucleus 2,

A novel situation arises if the two nuclei are identical, as in the
molecules H,, C,, N,, O,.

If the nuclei comprise an even number of nucleons, the wave function
should be symmetric: these nuclei are called bosons, as they follow Bose
statistics.

The situation is particularly simple if the nuclear spin is 0. As the wave
function is symmetric under interchange of 1st and 2nd nuclei, i.e., under
sign inversion #y,, — — 7y, (in this transformation r—r,8 >n— 0, ¢ —p-+n),
the odd values of [ are excluded.

Experiments show that a C, molecule comprising two C!2 nuclei may
occupy only states with [ =0, (=1, [ =2, [=4, etc. A carbon molecule
comprising two different nuclei C12, C13 or C!2, C!% may occupy all the odd
and even states =0, [=1, =2, I= 3, etc.

Sometimes the difference between the classical (Boltzmann) statistics
and the quantum statistics of Bose and Einstein is formulated as a difference
in the method of counting of states.

Consider two particles A,B and two states 1, 2. In classical statistics
we distinguish between two states: A4,B,and B,4,; in quantum statistics, if 4
and B are identical, the system has only one state, with one of the particles
in state 1 and the other in state 2,

The carbon molecule C!2C!? provides an excellent example: here clearly
the quantum-statistical properties have nothing to do with the method of
counting. In this Bose system, certain states (those with even {) are
forbidden and do not occur in nature, although they do exist in systems
comprising different particles. For identical particles we have an entirely
different mechanics, which forbids certain states; the different statistics
is simply a consequence of the different mechanics.

For fermions the situation is simpler, and even a novice is in no danger
of committing an error: that no two particles may occupy the same state
is an obvious restriction.

The situation which is fairly clear for a diatomic molecule is not so
transparent for independent particles in a general field and especially not
for a continuous spectrum. In the above example, for different A and B
we are dealing with two different states A;B, and By4,. If A and B have
close properties, the energy of these two states is nearly equal. Moreover,
if A and B interact, the solutions of the Sch. Eq. are the combination states

A,B; + B,A, and A,B, — BA,.
Interaction mixes the original states, but according to general theorems

it does not affect the overall number of states (2 =2), just as rotation of
the coordinate axes does not affect the dimension of space.
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If the two particles 4 and B are two identical bosons B = A, only the
symmetric state A,B; + B,A, exists; the second, antisymmetric state is
forbidden in the same sense as C!2C!%? with /= 1 cannot exist., For fermions
the symmetric (even) state 4,B, + B,A, is forbidden and A4,B, — B;A, exists.

In classical statistics the states are counted as if all the particles were
different.

Let the number of particles be much less than the number of levels
which are occupied on the average by these particles. The probability of
finding two particles on one level (which is strictly forbidden for fermions)
is therefore small. In this case, the total number of states for different
particles differs from the number of states for bosons (or the equal number
of states for fermions) by a constant factor N!, where N is the number of
particles. The constant factor in the number of states introduces a constant
term to the entropy and the free energy; classical statistics therefore leads
to correct thermodynamic results in this case. The observable quantities,
which are independent of the additive constant in Bose and Fermi statistics,
will coincide with the results of classical statistics in the limit of iow
occupancy.

How are we to reconciliate the classical statistics with the fact that half
the levels in a diatomic molecule are missing? To this end a molecular
symmetry number 2 is introduced (for a diatomic molecule) and the phase
volume is divided by 2 (or alternatively kIn2 is subtracted from the entropy).

It is interesting to trace the origin of the same number 2 in a diatomic
molecule with nuclei of spin 1/2, e.g., H,. The wave function in this case
is representable as a product of orbit and spin funciions,

The antisymmetric spin function a8, —a,f, of two spin 1/2 particles
corresponds to zero total spin. The symmetric function corresponds to
s = 1: there are three such functions: s, =1, o0 5 =0, oy ofs;

s; =—1, pB,. For s= 0 the orbit function iseven, {=0, I=2,..,.
(para-hydrogen). Fors = 1 the orbit functionisodd, I=1, {=3,...
(ortho-hydrogen). Thus, some rotational states have one spin state, g = 1,
while others have three spin states, g = 3, the average being g= 2.

A molecule comprising two different atoms, e.g., HT (a hydrogen —
tritium molecule), has four spin states* for each !; for any [ there is both
s=0, g=lands=1, g= 3.

The drop from g= 4 for a molecule comprising different atoms to g = 2
for a molecule made up of identical atoms actually corresponds to the
symmetry number 2.

The introduction of the symmetry number enables the classical statistics
to cope successfully and correctly with various problems in the theory of
molecular dissociation and in general with problems involving low occupancy
numbers; in such systems the results are independent of spins and nuclear
statistics; the results are further independent, as can be shown, of the fact
whether we are dealing with a single species of nuclei or with an isotopic
mixture.

One cannot expect correct results without clearly understanding the very
foundations of classical, Bose and Fermi statistics, as elucidated (we hope)
by the examples of this section,

* Note that these four states can be counted simply as a product of the two states of H (s,= +1/2, 5,= -1/2)

with the same two states of T. The total-spin classification does not alter the position.
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Chapter 2

THE CONTINUUM

§ 9. INTRODUCTION. CONTINUUM WAVE
FUNCTIONS WITH (=0

In this chapter we consider states which form a continuum. These
states, as we know, describe particle scattering in a potential field.

The theory of scattering is an important subject in quantum mechanics
which has been developed in considerable detail. The most comprehensive
treatment of this theory can be found in Landau and Lifshitz's book /8/
and in the recently published monograph by Goldberger and Watson /73/,
which is devoted in its entirety to collision theory. The latter book also
gives a detailed bibliography on the subject. Here we will discuss only
some of the properties of wave functions forming a continuous spectrum.

First consider continuum functions with given E and /. These functions,
as it follows from (1.8), are essentially different from zero in the entire
space. The condition of vanishing at infinity therefore does not apply and
we are left only with condition (1.7) imposed on the two linearly independent
functions y*). Hence, for a fixed energy E and any I/, we may form a
solution which satisfies condition (1.7); furthermore, a real solution may
be chosen. Some properties of this solution for ! = 0 are considered in
the present section, and the case [ 0 is treated in § 10,

In the case of a continuum, as opposed to the case of a discrete spectrum,
the Sch. Eq. has solutions for all { for a given E >>0. Therefore any
superposition of these solutions is again a solution of the Sch., Eq., and
vice versa: any solution of the Sch. Eq. with a definite positive energy can
be represented as a superposition of solutions with different ! and fixed E.
It is because of this property that we can choose different complete systems
of wave functions,

An important state frequently encountered in the theory of scattering
is a superposition of a plane transmitted wave plus a scattered wave, i.e.,
a state whose asymptotic behavior for r — o is described by e+
+ f (0, @let*/r., We can also form states with the asymptotics ez +
+ f1 (8, ¢) e¥* /r; here the function fie¥*" /r describes an incoming wave and
e’* describes a particle emerging in the direction of the z axis. These
functions, however, are encountered relatively seldom. The topics relating
to this problem are treated in § 11.

Finally the last section (§ 12} of this chapter gives a derivation of the
so-called optical theorem and its generalization is considered.

Let us now proceed with a more detailed discussion of states with
fixed E and !, We will want to identify the states y®). In a state described
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§ 9. CONTINUUM WAVE FUNCTIONS WITH I = 0

by a function ¢ (r), the current of particles at a point r is given by

. b, . .
J(0) = — 5 B’V — V). (9.1)
. - 1 g .
Inserting the functions vie 7 we find
) () . 4. 2 €
J (')-ﬂ:m‘,T. (9.2)

where v = %’5 is the velocity corresponding to the wave vector #. Thus,

the function y{’ describes particles which move with velocity v inalldirections
from the origin (a divergent outgoing wave) and the function %5~ describes
particles which move with velocity v toward the origin (a convergent in-
coming wave). The total incoming (y=) or outgoing () flux of particles
crossing a sphere of radius R every second is clearly given by

4nRYD (R) = + v. (9.3)

The normalization of the functions y§*’ used in (1.8) thus corresponds to
the-fact that v particles pass every second through a large sphere, the
particle density p being 1/4rR* particles/em?3. Hence it follows that the
functions @ are not solutions of the Sch. Eq. for r = 0, as this point
is a source or sink of particles. The two functions ¥4, however, can be
formed into a linear combination ¥, (r) which shows proper behavior at
r =0, According to (1.9), % includes both %? and ¥{?. The former
corresponds to an incoming flux of particles falling on the force center
from infinity, and the latter represents the outgoing flux. In other words,
%: (r) describes the scattering of particles in a potential field V (r).

L.et us consider in more detail the case [ = 0. The potential is assumed
to be identically zero. The solutions

X (r) = exiv (9.4)

are then exact solutions of equation (1.6') in the entire space, except the
point r = 0. The boundary conditions at r = 0 are satisfied by the unique
solution

e (r) = o8 — %Y = — 2isin krr;—»o — Oikr, (9.5)

Zero potential clearly leads to zero scattering., Therefore x describes
free, unperturbed motion of particles in space (with zero orbital momentum
relative to r = 0), The coefficient A (k) in

K= A () G — S (&) «(")

(this is the amplitude of the incoming wave) is clearly an arbitrary para-
meter independent of the potential U (r); A (k) depends only on the number of
particles "aimed" at r = 0 from infinity. S (¥, on the other hand, is
determined entirely by the form of the potential, and it is this function that
specifies the scattering power of the potential.
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To isolate the part of the wave function which describes actual scattering
in a potential field, we write X (r) in the form

Xe () = A () I — 27 — (S (k) — 7). (9.6)

The first two terms in brackets coincide for r >> R with the wave function of
free motion (see (9.5)). The last term is therefore the one describing the
scattered wave.

Scattering by a potential cannot involve absorption or creation of
particles. Therefore the number of incident particles hitting the force
center should be equal to the number of outgoing particles, In other words
|S (k)] = 1 and we can always write S (k) in the form

S (k) = exd®), (9.7)

where § is a real function, called the scattering phase. In free motion we
clearly have 8 (k) = 0 (see (9.6)). In general 6+ 0, and the wave function
for r > R can always be written in one of the following forms:

Xe (1) = Ae® (X e® — ¥{Ded) =
= — 2iAe® sin (kr + 8) = — 2iA [sin kr + ¢ sin 8ei#r], (9.8)

What was our justification for splitting up the wave function into two
parts and assigning them the meaning of wave functions for the incoming
and the outgoing flux of particles? The question can be phrased differently.
For a continuum of states a real wave function can always be chosen. We
know, however, that in states described by a real wave function, the
particle current is zero, Were we right in identifying the part of the
function proportional to e’ in the last term in (9.8) with scattered particles?
To answer these questions, we have to consider the motion of wave
packets. Take the case of particle transmission through a potential barrier.
The potential has the form (Figure 5)

U=U, for —a<x<a, (9.9)
U=0 for x<—a, a<x.}

The wave function, as we know, can be written in the form

£t
(e — A(k)e*)e” ® for x< —a,

$e (x, 8) = (9.10)

_Et
By T for x>a,

where A is generally called the reflection coefficient,

Up

Y
-z a
FIGURE 5.

51
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§9. CONTINUUM WAVE FUNCTIONS WITH (=0

Now we combine states with energy Ex~E, into a wave packet,

Ep+AE

Vi =gp § dEve(x o), (9.11)

E—~AE

where AE is assumed to be so small that the energy dependence of 4 and B
is ignorable and for k4 we use the approximate expression

h=hot (E—Eo) (g5 ), + oo = b+ B2 (9.12)

Elementary calculations give

(+) p— (-} -
vy = |06 AT AT EY BT (9.13)
(ko) 9 (x, 1), forx>a,
where
EAE _Et) : _ Edt) sin (x F o)
1 ¢ | thx i | thox .
P2 0 = 555 SEdE“(i Vo e B
Eqo~A

The function ¢@® (x, f) does not vanish only when x—uyt= 0, and ¢ does
not vanish only for x + ut¢ =~ 0. Consider the region to the left ofthe barrier,
where x <0, We see from Figure 6 that for ¢<{ 0 only ¢* does not vanish

(the wave from minus infinity
incident on the barrier)., For ¢t>0
Y R/4 the position changes: there is no
term ¢ left of the barrier, but

- the term ¢ is nolonger zero (awave
reflected from the barrier). To
e za oz the right of the barrier x>0, and
therefore the condition x — vt = 0
>0 can be satisfied only for ¢> 0,

Thus, for {< 0 the wave function
- - is identically zero everywhere to
% @ the right of the barrier. For ¢> 0,
on the other hand, a wave B (k)"
is formed, propagating in the
FIGURE 6. direction x— + oo,
The coefficients A (k) and B (k)
clearly determine the intensities of
the reflected and the transmitted wave, and we see that ¢** and e“* may
indeed be interpreted with complete justification as the wave functions of
particles propagating in the directions x = + o and x = — =, respectively,
Let us further consider the normalization of continuum wave functions.
The continuum functions ¥%; (r) vanish nowhere in the entire space, and they
cannot be normalized to unity as in the case of a discrete spectrum.

Normalization to unity corresponds to a condition that there is but a single
particle in the entire space, Since a continuum function is everywhere

different from zero, normalization to a single particle in the entire space
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Ch.2. THE CONTINUUM
.. ]
(i.e., S i% (N¥dr = 1) is feasible only if we take a zero normalization coeffi-

0

cient A (k). There is, of course an alternative approach, defining normali-
zation in the limit: we first take not the entire space but only the bounded
region enclosed in a large sphere of radius R, Here the range 0 <r<R is
bounded and we can find a finite normalization constant A(t¢). In the final
result R is allowed to go to infinity, and 4 to zero, so that the product |4{'R
remains constant. This procedure, however, is unnecessarily complicated,
and is hardly ever used.

The common normalization procedure calls for normalization to the
§ -function:

§°x,, (ry%;, (r) dr = 8 (k— k). (9.14)

[

We will now prove the feasibility of this normalization, Consider two
close values & and &:

X+ (B =V =0,
%, + (k2 — V), = 0.

We multiply the first equation by x; and the second by %, and then
subtract one from the other:

10— aky = (R — RN WX

Integration over r thus gives

R
(i ar = El_k 0L () %5, (1) — % (1) X5 (1) : (9.15)

All the functions vanish at the lower limit; using the asymptotic expression
for the wave functions %, ~ A (k) sin (kr -+ §), we obtainafter some manipulations

R
. 4 . (& + ksin [(i—&) R+ 8 (k1) — 8(R)] __
§ Xk, dr = A (k) A" (kr){ T

— sy Sin [k + k) R+ 8(8) + 8 (k1.

Since R — oo, the last term is effectively equal to zero. Indeed, it is a
rapidly oscillating function of £ and %,;, and the frequency of oscillations
goes to infinity with R, Any integral whose integrand comprises such an
oscillating function multiplied by some sufficiently smooth function falls
off to zero, It is in this sense that we mean that the functions are effectively
equal to zero,

If (k, — k) is a fixed finite quantity, the first term is also effectively equal
to zero. Let us now consider the case (i — &) — 0. First note that the
difference 8 (k) — &8 (¥) is ignorable compared to R (&, — k), so that

R

Wy, 00 dr = Ak 4° ) 5 S2EBZRR (9.16)
0
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§9. CONTINUUM WAVE FUNCTIONS WITH /=0 ?

However, we know that

lim 12— 75 (x). (9.17)

sin ax
X

The graph of

is shown in Figure 7. This function is relatively large
for x~% and rapidly falls off with increasing x. In the limit as a-— oo this

function is zero for x==0 and infinity for x = 0. The area under the curve is

FIGURE 1.

We have thus proved equality (9.17). Using this equality, we write
(9.16) in the form

o0

Sx. ()%, (1) dr = | A.(k) P5-8 (k— ). (9.18)

The feasibility of 8-function normalization is thus established, and the
corresponding normalization coefficient is

A=V <. (9.19)

n

Sometimes the continuum functions are conveniently normalized to
8 (p (k) — o (&), where ¢ (k) is some function of k. The corresponding norma-
lization constant is

Alp (k) = W{”;HA (k). (9.20)

1}
For example, in case of normalization to the energy §-function ¢= % and

the normalization constant is

AE) =V = (9.21)
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Ch,2. THE CONTINUUM

Discrete spectrum functions vanish for r - c. By (9.15) we therefore
immediately have that the continuum functions are orthogonal to all the
discrete spectrum functions. * Moreover, any two discrete spectrum
functions with different energies En+ E, are also orthogonal. We may
therefore always normalize the wave functions so as to obtain an ortho-
normal system:

$Xm ()82 (1) dr = 8, § 1) 2, (1) dr = 6(k—k’),] (9.22)

{xey % (ndr = o.
Here §,, is Kronecker's delta.
The wave functions of the continuum and the discrete spectrum constitute

a complete system. This means that any sufficiently decent function f(r)
can be expanded in functions of this system,

F) = § dbC (8 X (r) + D Cata (7). (9.23)

The coefficients C (k) and C, are easily obtained multiplying the two sides of
(9.23) by x; (r) and g () and integrating over r:

cy=Sx0fedr, Co=§x 00 ar. (9.24)
Insertion of (9.24) in (9.23) gives

1O = §[S% 0%, 09+ §dene i 0] 1y ar (9.25)

Hence it follows that the expression in brackets can be identified with the
§-function:

;x,.(r)x;(r')+§dkx,, (NG =d(r—r). (9.26)

0

If the continuum functions are normalized to the energy §-function,
expressions (9.23)—(9.26) remain valid provided that %, is replaced by g
and the integrals over k are changed to integration over E.

§ 10, MOTION WITH ORBITAL MOMENTUM [ +0.
MOTION IN A COULOMB FIELD

The wave function of a particle in a state with a given orbital momentum

Xas (1)
T

! and given momentum projection m has the form Y/m (6, 9), where

4

Yim (9, (P) = m

elm (e) elmo'

and %y is to be found from equation (1.5).

* Note that if the continuum functions are replaced by free motion functions, the latter are no longer

orthogonal to the discrete spectrum functions, and this may lead to considerable errors in calculations.
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The properties of spherical functions which describe the angular
dependence of a wave function with given [ and m have been studied in
fairly great detail.

We will only consider here a number of theorems which readily follow
from the general physical arguments and the analogies derived in the limit
of classical motion. *

We start with a function corresponding to maximum |m|, i.e., m= 41,
In this case 0, (8) clearly has no nodes (since sin mg and cos mg have the
maximum number of nodes). In the limit of large ! this case corresponds
to an orbit lying in the equatorial plane with the angular momentum vector

along the z-axis. In this limiting case we thus have |8, (8)|? = 6 (6 — —g—) .
This estimate can be improved by finding the law according to which
| 84 (8)]* approaches 8 (8 — 12‘—) with increasing I, growing narrower and con-

centrating toward the equator.
Note that the square of the angular momentum is { (I 4+ 1) and its projec-
tion m on the z axis is equal to /. We can thus find the average angle o

between the z axis and the normal to the orbital plane, cos a = —L =~

' i Vig+1)
e 1—7, a = |/ T It is readily seen that the average angle B betwee:n
a vector lying in this inclined plane and the equatorial plane is V@= V2=
1
W.

Thus for large but finite {, |8, (8)]* has a maximum at 0=%‘ and its
1

effective width is 7 This means that it can be approximately replaced
b Vi —if{e—g). . . . .
y —V—_n—e ; the pre-exponential coefficient is determined from the

normalization of spherical harmonics.

How are we to envisage the opposite extreme case, namely a function
with given large I and with m = 0 ? Such functions are encountered, in
particular, in scattering problems, since a particle which moves along
the z axis identically has m = 0,

The properties of the sought function can be elucidated by considering
motion of particles in circular orbits. Take the set of all circular orbits
with axes perpendicular to the z axis, i.e., circular orbits in the x, y plane
(for these orbits m = 0), All the directions in thex, y plane are equiprobable
for the orbit axis.

All orbits intersect at the poles and the probability density per surface
area of unit solid angle (i.e., per unit surface area of a sphere) is maxi-
mum, going to infinity at the poles for 6 = 0 and 6 ==.

We will now derive an expression for this probability density. As one
moves along the meridian, all the df intervals are equiprobable, dW = —d,‘i.
Dividing dW by the area which corresponds to the angle d8, dS = 2n sin 646,

we find W .
e =
[Yol= ds 2n3sin® *

® A similar treatment of Clebsch—Gordan and Racah coefficients was given by Wigner /74/.
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Ch.2. THE CONTINUUM

It should be noted that Yp (6) is actually an alternating function with [ nodes
in the interval 0 {8 n (its ! node lines are the parallels); the above
expression is significant in so far as we ignore these oscillations. The

oscillations are ignorable only if > 1, and we take A9>-;—.

Let us estimate the maximum deviation from spherical symmetry for
m=0and I>1. We see from the above expression that the density is

minimum at the equator: for 6 = -;l the average |Yu[* is equal to 2—:‘;, whereas
1

H-
less than the average by a factor of % Note that, strictly speaking, the

the average for the entire sphere is The density near the equator is

density fluctuates from 0 to % if the fine structure (the nodes) is taken

4

into consideration; for odd [, 8 =0 on the equator; for even [, lyml'/z{; ==,

and -’%- is obtained by averaging over the oscillations. It is remarkable that
an asymptotic value independent of [ exists in the limit of 3> 1. Near the
poles [Vt — oo when [— oo, For finite {, the maximum is observed for

0 =0andb=n:

{
|Y10(0r (P)P: Iylo(ﬂ. ‘P)sz.

If the experimental angular distribution is stretched along the z axis more
and near the equator less than by % = 0.65 of the average, we can be certain

that we are dealing with interference of states with different /.

Now, asymmetry relative to the equatorial plane, i.e., asymmetry for
2> 0 and 2< 0, is clearly possible only in the result of interference
between states with even and odd /.

For particles of spin 1/2 the total momentum j is a half-integer. Every
j can be formed in two different ways, j=04+: and j=Il3—1/,.

The wave functions are products of orbit and spin functions, formed in
compliance with the rules for momentum composition, We introduce the
following notation for spin functions:

1 1
d—-»sz:-z—, B—»sz=—-§-,

Explicit expressions for a few of the first wave functions are given below:

[=0, j=15,(Sn)
2 m 0,04
m=——;-' =—VL'—411B=Y°'°B;
A (10.1)
m=-;—, v=—1Y Y+ %Yl.lﬁr
I=1, j=5.(Py)
m=— %, Y=— V_%Yl.-la'i' ]/—%yx,oﬂi
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1=1, j=3,Pw)

m =%1 “P=Y1,1"’:
m =-;—-. \P=V%Y1.o¢+ V%YI.IB»
m=—%, Y= V‘;‘Yl.—la+
+ V‘;;' Yl.har
m=— 7}, Y=Y
1=2, j=3, (Dy) (10.1)

m=?’ qp_— -s—y"oa"‘ ?yllpl
m=—t v=—V Zrie+ Y Iv.8,
m =——2—v = — ]/%Yn-aa'*' ?y,‘ip

A remarkable property of these functions is that the total particle density
after averaging over the spin directions depends only on j and m, i.e., it

is the same for j= {, +1,and j =, — ;. Thus, for example, for j= %,

% we have in the first case (Py,)

|9t = 5 sin*0 = 2 (1— 3 (3cos'0 1)) ,
and in the second casé D)
19 =i (3-cost@sin®0 + 3-sint0) = L (1 — - (Beos’@—1)),

i.e., both results are equal.
In the particular case j = —% the total density is isotropic not only for

Sy, (I = 0) but also for Py, (I=1):

’ \PSA/. " = ' ‘PPJ,. " = % .

We can distinguish between 4 + % and [, —% only by polarization measure-

ments, i.e., by measuring both the total particle density and the spin
direction.
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Interference between [, + —;— and [, —% creates asymmetry of total density

about the equator. In particular, although the individual states Sy, and Py,
are isotropic, interference of these states produces anisotropy: the maxi-
mum corresponds to the linear combination

=75 by, 0,

. 1
In this case W = [§f = ;= (1 F cos 6).

The above properties are specific of spin 1/2 particles, and it is these
particles which are of the greatest importance in practical considerations.

We will now proceed with a discussion of radial wave functions.

Virtually all the specific nuclear interactions are short-range inter-
actions, i.e., they can be taken equal to zero outside a certain sphere
r=R. The centrifugal potential which enters the Sch. Eq. for {0, on
the other hand, extends far beyond any sphere r=R and essentiaily modifies
the form of the wave function for r > R.

For r > R, the equation for g, has the form

- 1
o (= LY,

which is reduced to Bessel's equation by a substitution x = VrZ. The
general solution of this equation in the exterior region is thus

X (r) = V7 Zyasy, (Rr),

where Zi, is any of Bessel's functions of order [ + 1/,.
As the two independent solutions we choose

1) =i Y T HE, (kr) = (kr) B (hr),

(10.2)
X ) = —i YV L HE, (br) = (k) 1P (),
where A® and H®are Hankel's functions.* For large kr these two
solutions behave as
i
s 1y~ e ) (10.3)

and correspond to incoming and outgoing particle fluxes. These solutions
are a generalization for [ 0 of the functions X and have the same physical
interpretation. The continuum functions describing the scattering of a
particle of momentum ! can be written by analogy with (9.6) and (9.8) in

the form v Y
Xer = Ar (k) (57 — Si (R) %),

(10.4)
g~—2iA; (k M sin br— + &) for r—» oo.
p i3 )

£
N n
* These functions are polynomials of degree ! of the argument 7:-;, multiplied by ei‘("_T). Their

explicit form is obtained from the formula

), e:tikr

d
1 ) = (1 @ ()
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Here ¥ = S, (k) has the same role as S, for I = 0, If the potential U is
identically zero, the above expression for the wave function should be valid
in the entire space. The functions ¥{¥, however, behave for small kras

x‘?’~r*——(l+T) (:?T)l (10.5)

(here I' is the gamma function) and are clearly irregular at the origin,
To obtain a regular function, we should form the difference

1 o nkr Vr kr \H1 10.6)
L —xn=V %7 | (tr)~ BN (10.
PR 9 ki 2 [+.;_ I‘(l-}-%)(z)

where

=1 (gw @
J‘+%(kf)=7(HH'%(kf)-—HH‘JZ,—(kf))

is the ordinary Bessel function, and this difference vanishes at the origin. *

Comparison of (10.4) with (10.6) shows that in case of zero potential the
phase §; vanishes and S;(k) = 1, in complete analogy with the results of § 9.
The scattering power of the potential is determined, as before, by {8 (k) — 1%,
As regards S (k) itself, it cannot be computed unless the solution ¥ (r) of
the Sch. Eq. inside the potential range (r < R) has been found. As soon as
this solution is known, S; (&) is calculated by (1.11), where x{¥ and y{ are
replaced by their analogs y{’ and x¥l. Tt is also easily seen that expressions
(9.18)— (9.26), which define the normalization for ! = 0, remain valid for
% With any [,

We thus see that the case [+ 0 differs from that of § 9 (I = 0) only
guantitatively but not qualitatively. The physical interpretation and the
qualitative features of the solutions of the Sch. Eq. are the same in both cases,

We have so far worked with a neutral, uncharged particle. Let us now
consider the case of Coulomb forces acting on the particle in addition to the
potential U (r). The charge of the particle is ¢, and the charge at the
point r= 0 is e,

The total potential seen by the particle is now given by

Viy+ 29 4 2% or r <R, (10.7)
’(H'i)-{- Z"k for r >R,
where n=22, v is the velocity of the particle.

For r >R, the Sch. Eq. has the form

” {
sz+(km—(l_+1)—¥)xkt=0- (10.8)

r?

The properties of this equation have been studied in considerable detail.
Its two independent solutions are generally chosen as the so-called regular

*  This behavior of the wave function for small r is easily elucidated from equation (1.5).

45



Ch.2. THE CONTINUUM

and irregular Coulomb functions F; (kr,m) and G, (kr,n). For r— oo these
functions give

F1~sin{kr—~—’2£+m-—nln2kr}, (10.9)
G,~cos{kr~—'2£+ n— 'qln2kr},

where n,=argl'({ 4+ 1+ in). For r—0, F, approaches zero as r*1, and G; goes to
infinity as r:
Fi(kr, n)~Cy (kr)™,
r—0
(10.9)

i -t
Gukr. D~ e, *0™

where
{
Co= gy WP+ 1) @ ). (B P4 Co,
Coe [ Zn'qe”"" ]'/r
0= | ~ann .

§ _ gnn

In the following, we will use linear combinations of the Coulomb functions:

In
2w (r) = G,iiF,~e*‘(""T+"“‘”“”") (10.9")

These functions, by analogy with the functions (10.3) defined in the pre-
ceding, describe outgoing and incoming particle fluxes (v particles through
a sphere of large radius every second). This is easily verified if we
compute the corresponding fluxes. The term with In 2kr in the exponential
can be treated as constant, since on differentiation with respect to r it
gives a contribution which vanishes for r — oo faster by a factor of r than
the principal term.

For positive energies, the general solution of the Sch. Eq. in the region
r > R can be written by analogy with the previous treatment in the form

T () = Ay (B) (7 (r) — Sk (r)) ~
~ —2iA; (k) e sin (kr — 3+ mi+ & — nin2kr),

Sl(k)_:-eﬂbl. (10.10)

If the potential U (r) identically vanishes, the solution (10,10) should hold
true in the entire space. In this case § =1 and §;= 0. Indeed, we know
that only one of the Coulomb functions, F;, is regular at the origin. This
means that (10.10) should not contain G, i.e., S, =1.

For nonzero U(r), we have Si#1 and §; is a characteristic of the scatter-
ing power of the potential U (r). 1%, is conveniently written with the pure
"Coulomb' part separated:

Xua (1) = As (B) (1f7 — 9 — (S~ 1) 47} =
= A; (k) {—2iF; — (S, — I}

The last term in this expression is entirely attributable to scattering by the
potential U (r) and it vanishes when the potential is zero.

(10.11)
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§ 11. CONTINUUM WAVE FUNCTIONS,
SCATTERING CROSS SECTION (NEUTRAL PARTICLES)

We have so far dealt only with particles with a definite angular momentum
relative to the origin. In scattering problems, however, we are dealing
with a beam of particles propagating with a definite velocity in a definite
direction in a scattering field U (r). The way to approach this problem is
the following. *

A linear beam of particles moving in the direction k is described by
a plane wave e Indeed, the current corresponding to a plane wave is

AR
J=Z =0

The angular momentum of these particles relative to the origin is undefined,
since the probability density |e*{* = 1 is constant throughout the space and
in classical terms any values of the impact parameter are permissible for
a given velocity. The fraction of states with different angular momenta [
relative to the origin can be found from the expansion of a plane wave in
spherical harmonics:

pibr — i (el + 1)p,(.;:_);,(,,,) -
=0
= %Eil}/n QI+ 1Y, (l;;’) (Xi‘;)(f)—xfg)(r)). (11.1)

Here P; are the Legendre polynomials, ¥, are the spherical harmonics,

and x are defined by (10.2). We see from this expansion that the incoming
) .

wave — Y with momentum [ is contained in the plane wave with the

amplitude

Cim— g FVR@FT). (11.2)

In classical physics the angular momentum of a particle relative to some
point r = 0 is L = [rp)], and its projection on the direction of motion is zero,
This theorem is valid in quantum mechanics also: the function Y. (8, ¢)
corresponds to a state with angular momentum { and projection m on the
quantization axis (i.e., on the direction of particle motion in the particular
frame), That e/ is expanded only in terms of ¥y actually signifies that
the particle beam moving in the direction of k contains various angular
momenta [ relative to the point r = 0, but the projection of the angular
momentum on the direction & is invariably zero.

Expression (11.2) implies that the wave function describing scattering
of a linear beam should have the form

W (r) = N C¥u(5) + 0k — Sk, (11.3)

* The general method of solution presented in this section was first applied by Faxen and Holtsmark /75/;

a particular case of scattering of sound waves by an impenetrable sphere was treated by an analogous
method by Rayleigh /76/.
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Indeed, waves incident on the force center (i.e., the terms with )

clearly have the same amplitude as the wave propagating in free space;

the amplitudes of the outgoing waves (i.e., the coefficients of x®), however,

acquire an additional phase factor S; = ¢#% due tothe effect of the potential U (),
Expression (11.3) for ¢, is conveniently written with the scattered

wave separated:

1174
Ba(F) = % ICK 1o o) (1 — Si) 5 0P ~ €+ F(0) = ; (11.4)
i
here f(6) is the so-called scattering amplitude,

f(e)=§:7f}V4n(21+1)Y,o(zr—’)(s;—1),cose=%. (11.5)

=0

If the potential U (r) is identically zero, all S; are unity, f() = 0, and no
scattering is observed. If the potential does not vanish, f(0)+ O.

Let us calculate the current of particles scattered at an angle 9 and
emerging from a large sphere through a surface element risin0d0dp = r* dQ,

ik
The scattered particles are described by the term f(e)ir—r. The correspond-

ing particle flux is
j (8) dQ = v|f (8)]dQ.

The so-called scattering cross section ¢ () is introduced as a character-
istic of the scattering power of the potential. It is defined as the flux of
scattered particles within a solid angle dQ produced by unit flux j
(1 particle/cm?.sec) incident on the force center. The incident current
is equal to v. The scattering cross section in a potential U (r) is thus given by

0 (6) dQ = |} (B)dQ. (11.6)

Integration over all the angles gives the total scattering cross section*
T o L=

o=So(9)dQ = D@+ DS~ 1] = 3 3 @+ 1)sindy, (11.7)
=0 =0

which is a sum of cross sections for states with different {:

G=ZG;, -7} E"—(ZIkT-i-QIS[-—II’. (11.8)
]

The scattering cross section at a given angle ¢ (8) (the so-called differen-
tial cross section) cannot be presented in a similarly simple form. By (11.5)
and (11.8) o (8) is written as

60 = DV TN CLF )YV i (Si—1) (S,—1),

4,1

® In classical mechanics ¢ = oo if the potential U (r) does not vanish for r greater than some R, A
remarkable feature of quantum mechanics is that the cross section is finite for all potentials falling off
faster than 1/r. An essential difference between the classical and the quantumn cross sections clearly
becomes apparent for smali-angle scattering.
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so that it contains interference terms Y,Y*,, between states with different
orbital momenta /. The interference terms cancel out only when we
integrate over all the angles, as the spherical harmonics are orthogonal.

The functions ¥, (r) can be written in a very illustrative form. We use
the following equality

% 2 (21 + I)P[ (nn;) = i VWI—{———]_) Y,o(nnl) =
=0

=0

=218(1 —nny) =218 (n—ny), (11.9)

where n and », are any two unit vectors, and 8 (# — n;)) is the §-function,
Equality (11.9) is readily verified by multiplying both sides by Yy, (#n,) and
integrating over all the directions of one of the two vectors, say n:dn =
= gin 6d0 de.

From (11.1) and (11.4), making use of (11.9) and the known relation
Y (—nn,) = (—1)Y, (nn,), we immediately obtain for large r

W lr) ~e 4 [ (0) S = 2 (n 4y 4
e (11.10)
[6 (n—ny) + f (nul)] e”"}

k r
Here n=T; n1='r—.

Expression (11.10) has an obvious meaning: the incoming particle beam
has nonzero amplitude only for », = — », which corresponds to particles
moving in the direction ktoward the origin. The amplitude of the outgoing
particles is divided into two parts: unscattered particles which move away
from the origin in the direction », and particles scattered in all directions

which are described by the term —iz%f(nnl).

We can now construct a complete orthonormal system of wave functions.
To this end, we have to compute the integral

-ty
S¢, (F) ba, (r) dr = (2,;)82‘,.{‘_,5 Y@ F 1)L+ 1) x
st g1 kI=b, (k) S s (r) Ko, () dr SerYm( )ym(k:r)
Integration over the angles is elementary:

Serym( ) Yl,o ( ) 8u, l’ 2[ 1 Y’“( ::: )

Since the radial functions are normalized to § (¢ — &), we obtain

{drbati, = (2::)*5""”’)§}Vu‘—(2t+ DY io( 251) = (208 (k — ko). (11.11)

Thus, the set of functions ${= ¥» for all possible vectors k constitute

(Zn)"
an orthonormal system. However, this system, in general, is not complete.
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Indeed, besides the continuum states, we may have the additional solutions

1
Yrum (F) = —Ant (r) Yim (8, @),
§ i () ¥, (1) d = Brn s,
for some discrete negative energy values E, (or for the corresponding
imaginary wave vectors ks = iny); these solutions describe bound states
of a particle with orbital momentum ! and projection m in the potential
U (). Moreover, we know from the previous section that the continuum

and the discrete-spectrum functions are mutually orthogonal {$am (r) g, (r)dr=
= 0. We also know that the functions

Yum(r) and 7 (r) (11.12)

constitute a complete set of Sch. Eq. functions which satisfy the conditions
of boundedness and continuity in the entire space. These functions are
orthonormal, so that

Sdr ‘pnlm (f) q’;.l,m. (f) dr = 6rm,bll,bmmn
{dr ot () 447" () = 0, (11.13)
(ar o (r) 4" (1) = 8 (e — 1.
Since the system is complete, any square-integrable function ¢ (r) (i.e.,

a function for which the integral over the square of the modulus is bounded)
can be expanded in these functions:

?(F) = 3! Cotmbrum () + SdkC () v (r), (11.14)

nim

whence, multiplying by ¥}, (f) or ¥{"* (r) and integrating over r, we readily get

Cotm = drp () brum (1), (11.15)
C(k) = S dre (P9 (r).

It is obvious that a complete system of functions can be selected in an
infinite number of ways. Indeed, as a complete system we may choose,
say, the functions

\Pnlm(f) and \Pktm(r) = ':_Xkl (f) Ylm (:—) » (11-16)

or any linear combinations of these functions. The previously introduced
functions ¥{ (r) are indeed one of such combinations of Yum (r).
In addition to ¥{” we sometimes use the functions

¥ (r) = v (r). (11.17)
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These functions have the form
= 1 . kr\ - 11.18
O = S VR + 1)Y,o(7§)e ‘l“'_r‘_x,,,(r). ( )

Their physical meaning is clearly understood from the asymptotic
, expression

‘p(.-)(r)~—1—[eikr+ft(_ %) e-ikr]~

@n)' r

~(—£;1),Ti2—;{—[6(n+n1)—%i~f'(—nn1)]e-’k'+ 6(n-—n1)e”"} for r—o0. (11.19)
We see that although the particles converge to the force center from all
directions, the phase relations between the amplitudes of the incident
waves with different ! are such that the scattered particles emerge only
in the direction k; scattering thus converts a convergent incoming beam
into a unidirectional beam., *

Taking the complex conjugate of the formulas in the first half of this
section and changing the sign of B, we readily see that the functions

Yum (r) and ) (r) (11.20)

are orthonormal and constitute a complete set of solutions of the Sch. Eq.
(1.2,

The very interpretation of the functions ¥§{" and ¢ gives a clue as to
when to prefer the system (11.12), when (11,16), and when (11,20). A
state ¢ () should be expanded in eigenfunctions (11,12) if we are interested
in the distribution (energy and direction) of the incident particles which
correspond to the state ¢ (r). If we are interested in the distribution of
particles over states with given [, m, and &, we should use (11.18).
Finally, if we want to find the distribution of directions and intensities
for the outgoing particles, system (11.20) is the best.

Suppose that a state ¢ (r) has been created in some way in the potential
U (r), and we inquire as to the number of particles with wave vector &
emerging from the origin., This number is clearly determined by the
square of the modulus of the corresponding coefficient

CP (k) = Sdﬂp (),

if we use an expansion in eigenfunctions (11,20), C© (k) can also be
determined from an expansion in eigenfunctions (11.12), but the procedure
would be more lengthy: first we have to expand ¢ (r)in ¥{? and find the
coefficients

C (k) = {dro (ol (),

Note that the states \b(:) and v(;)(often called the in and out states, respectively) reduce to the eigen-
2
functions of the free Hamiltonian H, =§pafcr r— o0, Thus, in our case the total Hamiltonian H is

naturally split into Hyand V. Scattering theory can be developed, however, without dividing the
Hamiltonian into these two parts /77/. A rigorous theory of scattering is presented in /78/.
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Ch.2. THE CONTINUUM

and then compute C© (k) from the resulting expansion:
CO k) = (dr { {ariC™ () v ()} 467" (7).

In principle, this technique is in no way inferior to the previous one, but
technically it is incomparably and unjustifiably more complicated.

We give one last formula which is a consequence of the completeness
property of the eigenfunctions of the Sch, Eq.:

i () Wi (1) + AU (P) W () = 8 (7 — 7). (11.21)

nim

§ 12, THE OPTICAL THEOREM AND ITS
GENERALIZATION

As we have shown in the previous section, scattering of a particle in a
potential field is described by a wave function

Ve (r)~e* 4 f(n, n')e*[r, where n=~FRik, n' =r/r.
r—+00

The first term of this function describes the transmitted wave, and the
second term is the scattered wave, Therefore, at a first glance, this
expression seems to involve a paradox: the beam of particles passes
by unimpeded and a certain additional beam is scattered. The scattered
beam is thus created from nothing, How are we to reconciliate this
apparent paradox with particle number conservation or, equivalently,
with probability conservation (i.e., unitarity)? A correct answer to this
problem is to be sought in the interference between the incident wave and
the wave scattered at an angle 0. This interference depletes the trans-
mitted beam. To obtain a clearer understanding of the mechanism of
scattering, let us calculate the current j(r) corresponding to this wave
function for r — o, Retaining only the slowest terms, we obtain

Db = — ifiyps = hkne'™ + hkn' %e"". (12.1)

Inserting this relation in expression (9.1) for the current, we get

-';:—j =kn+ %% (n+ n') [fe—{(lr-kr) + f'el(kr-kr):] + kn' —"f# . (12.2)

Finally, using the identity

. pikr thr
lim efknn'r — 2%[6(n+ n')- —é(n—n’)e——], (12.3)
r—+00 r r
we find
;o 8(m—m , e
mj=kn—knEimf (', ) 2B 4 1HERIE, (12.4)
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All the three terms in (12.4) have simple physical meaning: the first term
describes the flux of incident particles; the second term, associated with
the interference of incident and scattered waves, reduces the particle flux
in the primary direction, i.e., causes beam attenuation by scattering;
finally the last term is simply the scattered beam,

We now integrate the two sides of (12.4) over a large sphere of radius
r = R and transform the surface integral in the left-hand side to an integral
over the volume V enclosed within the sphere S:

§de = Sdivjdr. (12.5)
v

In stationary states div j = 0, which follows, e.g., from the continuity

equation div j +%= 0, since %‘;—= 0. Expression (12.5) thus takes the form
0=0—2X1Imf(m, n)+ Slf(n, n)|dn’. (12.8)

The last term in (12.6) is the scattering cross section o, so that

Imf (n, 1) = o o. (12.7)

We have derived the so-called "optical theorem", originally established
by Feenberg /79/. This important theorem relates the total cross section
to the imaginary part of the forward scattering amplitude. As we have seen,
the left-hand side of (12.7) is the result of interference between the ampli-
tudes of unscattered particles and particles scattered at an angle 8= 0 to
the incident beam. In other words, the "optical theorem'' is a quantum-
mechanical effect associated with the wave properties of particle motion,

The above analysis is equally applicable to the functions ¥ (r) and to any
linear combination

$(r)= SA(n)\lu..(r) dn. (12.8)

In this case, the requirement that the integral over the flux should vanish
for any A (n) leads to the following generalization of the optical theorem:

Imf(n, n') =%Sdn"f(n, ) (0, n). {12.9)

The reader will easily verify this identity.

Let us now consider another, more ingenious generalization of the
"optical theorem' recently proposed by Lippmann /80/.

This generalized ''optical theorem" is applicable not only to the
scattering of a single particle by a potential but also in a number of
other cases. We will therefore proceed with general treatment. Let
the Hamiltonian be H = H, + H,, where H, is responsible for scattering.
The wave function ¢, analogous to the previous ¢ and satisfying the
Sch. Eq. (E — HW" = Hp, has the form

Y = + E——Iii—o+—iaHl\p(+)’ (12.10)
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Ch.2. THE CONTINUUM

where the function ® is the solution of the equation Hy® = E® and is the
analog of the incident wave; the functions ® constitute a complete system /81/,

Consider any operator A which commutes with H,. Let ®; be an eigen-~
function of this operator, A®, = 4,0,, and let this function correspond to a
function ${".

We now calculate the mean of the operator 4 = ii,‘ [A, H] in the state ${P:
W7, AN) = (¥, 14, Hal v). (12.11)

Note that in general, this expression, unlike the analogous expression for
the case of a discrete spectrum, does not vanish, since formally it is
equal to a difference of two expressions each of which is infinite and thus
meaningless,

Using the completeness property of the functions ®,, we write (12.11)
in the form

(49 45 14, Hal 9) = 250 4, Im (9704) To =
23

2 Tha
=T§b}AbIm Tsa {%a*‘ﬁ;—m}. (12.12)
where
Toa = (O, Hip) = (B, HDa)

determines the probability W, of a transition from state a to state b in
unit time:

Woo =25 | Tpa|*8 (Es — E.). (12.13)
Using the equality
1 1, .
—n = P—;——*—lﬂb(x),

we transform the right-hand side of identity (12.12) to the form

2 AgIm Tag+ 55 51 44| Toa 8 (Es— Ea). (12.14)
1]

If Ais the unity operator, we obtain the ordinary ''optical theorem'
(although written in a different notation):

2 ImTae + 2 )| Thal? 8 (Es— Ea) =0. (12.15)

]

Solving for Im Ta and inserting in (12.14), we get

(v8", A A, Hil ) = 2 S (Ay— Ad) | Toal* (Es— Ea) = S\(Ap— Ad) Wpa.  (12.16)
b b

This is the desired generalization of the "optical theorem'. Expression
(12.16) gives the probability of a change in A in unit time during scattering
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§ 12. THE OPTICAL THEOREM
(the right-hand side of the equality) as a function of the mean of a certain
operator (the left-hand side of the equality).

Consider another particular case, Let H, =V, and for 4 we choose the
momentum operator p. Relation (12.16) now takes the form

(¥, (= V) = Do — p2) Vi, (12.17)

We have thus obtained the theorem on the momentum transfer in
scattering, first proved in /82/.
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Chapter 3

ANALYTICAL PROPERTIES OF THE WAVE FUNCTION
§ 13. ANALYTICAL PROPERTIES OF THE §-MATRIX

In the preceding chapter we showed that the scattering of particles in
a potential field is completely described by the phase factors S; (k) =
= exp (2ib; (k).

If we know the exact form of the particle interaction potential, analytical
or numerical solution of the Schroedinger equation will provide complete
information on the system. Had this always been the case, we could leave
with free conscience all the problems of quantum mechanics to electronic
computers, and proceed with matters of more importance. However, the
actual physical reality is far from this ideal state of things. In most cases,
the particle interaction potential is simply not known. Moreover, the actual
interaction between particles is apparently not described by potential forces.

Non-potential interactions are the subject of what is called quantum
field theory. (Simple problems of this kind are considered in Chapter 8.)
This theory, however, unlike quantum mechanics, is not free from internal
difficulties. For example, calculation of certain quantities involves
divergences (infinite, unbounded results). These divergences are apparently
associated with improper description of interaction at very small distances.

Heisenberg /83/ attributed these difficulties to the use of nonobservables,
such as ¢ (r), in the theory; a proper theory should deal only with observables,
which include the functions S; (k) = exp (2i §; (¥)) forming the so-called S
matrix (scattering matrix) /84/. The theory of the S-matrix is rapidly
developing in recent years, especially in connection with the description
of strong interactions of elementary particles. Particular attention is
devoted to the construction of S-matrix theory using unitarity and analyticity
properties. (Note that the importance of the analytical properties of the
S -matrix was first emphasized by Kramers 85/ and Heisenberg /86/.)
Numerous important advances were accomplished in this direction and
various relations between experimental observables were established.

Thus, the considerable progress in the theory of elementary particles is
definitely attributed to ingenious application of the analytical properties

of the S-matrix. Moreover, in case of quasistationary states and in some
other cases, the behavior of a system can be described without introducing
a particular interaction: it suffices to apply only general considerations on
the position of the poles of the scattering amplitude.

The S-matrix formalism is generally regarded as precluding space-
time description of processes., We should stress at this point that recent
results /87, 88/ give actual prescriptions for space-time separation of
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events within the framework of the S-matrix formalism. The applicability
of intensity correlations to the determination of the scattering amplitude
phase was demonstrated in /89 —91/,

We will discuss the analytical properties of functions proceeding from
the following general considerations:

{a) all the energy eigenvalues are real (a Hermitian Hamiltonian);
the wave vector & is thus automatically real for continuum wave functions;

(b) elastic scattering is the only allowed process;

(c) the Hamiltonian is invariant under space inversion (when the space
parity is conserved) and time reversal (when time parity is conserved),

Assumption (b) is needed so as to ensure that for given energy the radial
Sch. Eq. has only one solution with given I. Conservation of time parity is
equivalent to the requirement of a real Hamiltonian (F* = H); hence it follows
directly that if ¢ is a solution of the Sch. Eq., ¥*is also a solution.

We should note at this point that the space parity definitely changes in
so-called weak interactions, as was conclusively demonstrated in 1957
/92, 93/; recent results also point to nonconservation of time parity /94/.
Strong interactions, however, are believed to this day to conserve space
and time parity. The following theorems are therefore fully applicable to
strong interactions.

We will now consider the general properties of the functions S; (k)
entering the scattering amplitude. *

We have seen that for potentials U(r) which fall off at infinity faster
than 1/r, the Sch. Eq. has two solutions ¥ which behave asymptotically as

nl

x(k:f) _ etl (kr— T)

(the Coulomb potential case is not considered at this stage).
These functions can be formed into a solution which is regular at the
origin;k

Yoy = a1 (R) X7 (r) — b (R) %57 (1), (13.1)

where o and & are some constants dependent only on k. The function
clearly vanishes for r = 0 if ¢, and b satisfy the relation

=)
® o w0 (13.2)

aG® = e W0

From the definition of S; (k) we have

b, (k)

13.
am (13.3)

Si (k) =

Let us consider the general invariance properties of the Sch. Eq. First,
since it includes only the square of the wave vector £, the equation is

® A more detailed study of the analytical properties of wave functions and Sz (k) will be found in /95—97/,

** This solution can be normalized using a k-independent condition, say lim r'““)x,(r)= 1. In this case,
r+0

according to Poincaré's theorem /98/, % (r) is an entire function of k%,
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invariant under a change in the sign of 2. Thus if £ is replaced by - in
solution (13.1), the new function will also be a solution of the original
equation. As the solution is single-valued, however, the two solutions %«
and X-w may differ only by a constant factor. Since the asymptotic expres-
sion for the function y{’ gives the relation

1 () = (—%GH ), (13.4)
we find, changing the sign of & in (13.1),

a (k) by (—k)
=

Expression (13.3) yields the relation
Si (k) = Si* (—k). (13.5)

Still another important formula can be derived if we notice that as the
Sch. Egq. is real, the complex conjugate of any solution, Yt (r), is also a
solution of the Sch. Eq. for real k. As the solution is unique, we again
conclude that x» and xu may differ only by a constant factor, so that for
real &

ap(k) b (k)
b (B) gk’

Si (k) = (St ())*. (13.6)

This expression signifies that the two functions S; (k) and (S7* (k) coincide
over the entire real axis in the complex & plane. According to the funda-
mental theorem of analytical continuation it follows that

Si (k) = (Sik)™ (13.7)

in the entire complex & plane. The previous expressions establish a one-
to-one correspondence between the S; (k) values in the different quadrants of
the k plane (Figure 8): if the value of S; (k) at the point & is S,, we have

Sik) = g0 Si(—k)=S Si(—k) =5 (13.8)
0 0

It is thus sufficient to have the form of S; (k) in one of the quadrants so
as to be able to reconstruct the function S; (k) for the entire complex plane.
The above relations indicate thatat points symmetric about the imaginary
axis, S, (k)takes on complex conjugate values. On the imaginary axis,
S (k) is thus a real function, and the phase 6, (k) is a pure imaginary number:

8 (i k) = — & (i | k). (13.9)

For points symmetric about the real axis, we have (13.7). Hence follows
the known result: on the real axis |S;(k)|= 1, and the phase §; (&) is real.
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Let us now consider the singularities of S; (¢). The regular solution (13.1)
can be considered over the entire complex k plane, provided that ¢’ are
treated as the analytical continuations
of the corresponding functions for complex

@ k. In particular, the regular solution will
. have the same form (13.1) on the imaginary
~Ap ® 0 axis. Let the potential U (r) be such that a

bound state of the particle exists for some
negative energy - E,(or imaginary k&, =
-Kje Hyo = i|ky|). This means that the energy E,
corresponds to a solution which is
regular at the origin and falls off to

zero as e = ¢g1hlr at infinity. Since
FIGURE 8. is the 'orfly solution which is regular at
the origin, the existence of a bound state
implies that the coefficient a; (£) vanishes

fork=Fk =i 2—'"—',‘7["“'—'-; the %7 at this point is regular atthe origin. Similarly,

as for all the k on the imaginary axis in the lower half plane (¢ = — i|4])

1§ (r) = oo for r— oo, % ()0 for r— oo,

the existence of a bound state implies the vanishing of the coefficient b; (k)
at the point # = —#&,. This is a reflection of the previously mentioned
general invariance property of the Sch. Eq. under sign reversal of k.
Returning to (13.3) we come to the conclusion that a bound state corresponds
to a pole of the function 8; (k) situated on the imaginary axis in the upper
halfplane at the point & = &,.

In accordance with the previously discussed symmetry properties of
S: (k), this pole corresponds to a zero of the function §; (k) at the point
k = —ky on the imaginary axis in the lower halfplane. Notice also that
although a bound state corresponds to a pole, the converse is not always
true: not to every pole of S; (k) on the imaginary axis in the upper halfplane
corresponds a bound state. There are so-called "false'' or ''redundant"
poles of S;(k). We will yet return to this problem at a later stage.

It is readily seen that in the upper halfplane S; (k) may have poles only
on the imaginary axis, so that in the lower halfplane the zeros also lie on
the imaginary axis only. Indeed, apart from a common factor, the regular
solution (13.1) can be written either as

% (1) = 22 (1) — Su (k) %83 (), (13.10)
or as
Xulr) = ST (B) %5 — % (13.10")
If S, (k) had a pole at a point & = &, in the upper halfplane not on the imaginary
axis, the solution (13.10') would contain only the function y},, which falls off

exponentially at infinity:

Aas (1) ~ — (— Dfeihr = — (— i)let-ir Rekor Imha)y
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But the function ¥ (r) is by definition regular at the origin, and therefore
at the point % this solution would satisfy the two boundary conditions (1.7),
2

i.e., the complex quantity -’% would be an eigenvalue of the Sch. Eq. This
is impossible, since any physical potential is real and all the energy eigen-
values are real.

The requirement of a real potential is thus responsible for the concen-
tration of the poles of S; (k) on the imaginary axis in the upper halfplane.
In the lower halfplane, however, no restriction is imposed on the position
of the poles, and they may be distributed at random. These conclusions
remain in force even if the interaction forces are not potential. The main
thing is that the Hamiltonian should be Hermitian.

This theorem can be given an alternative, more formal proof. Consider
the time-dependent Sch. Eq. and its conjugate:

Y n

th—=— 5 Ay + Uy,

; * ht . .
~ ik g = — 3 AV + Uy

The first equation is multiplied by ¢*, the second by ¢, and one is subtracted
from the other. We get

B |9 = — o ¥ (T — V).

Integration of this equation over an arbitrary volume V enclosed within
a surface S gives the law of particle number conservation:

§7§I¢I’dr=<§>ds—%(¢‘vw—wvw (13.11)

Let now S (k) have a pole at some point k, = &, -+ ik, The wave function
at this point has the form

iEt A
Y= plr) e B O (R

Inserting this expression in (13.11), we choose the volume V as the inside
of a sphere of radius r = R, where R is sufficiently large so that on the
surface of the sphere we may use the asymptotic expression for the wave
function. Elementary manipulations give

R
uka |2 () [ dr = — fig ersmm,
]

Since there is a minus sign in the right-hand side, this equality is satisfied
only if

{a) k = 0, i.e., the pole of S (k) lies on the imaginary axis,

{(b) k=0, k<0, i.e., the pole of S (k) lies in the lower halfplane,

This completes the proof of the theorem.

The only constraint on the position of the poles in the lower halfplane
is that they should occur in pairs symmetrically about the imaginary
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axis.* The zeros of S;(k) in the lower halfplane, however, may lie only along
the imaginary axis. This follows from (13.5).

Poles in the upper halfplane correspond as a rule to bound states of
particles in the field U (r). For poles in the lower halfplane the regular
(at the origin) wave function has the asymptotic form

Y (r) ~— (— i)'e”" =—(— l')’elr Reksr | Tmil,
(13.12)
Y (1) = 00 fOr r— o0,

i.e., it diverges at infinity.

This wave function thus does not satisfy the boundary condition at
infinity and would seem to be physically meaningless. This is not quite
so, however. In Chapter 5 we will see that to every pole of S; (k) in the
lower halfplane corresponds a so-called quasistationary state of the
particle in the field U (r), i.e., a state which, once formed, will have a
finite lifetime 7.

Let us sum up what we have learned on the topography of the function
Si(k) in the complex plane. This function is analytical in the entire complex
k plane, with the possible exception of isolated singularities and cuts.

In the upper halfplane it may have poles on the imaginary axis only. Some
of these poles correspond to bound states, other are "false' poles. In

the next section we will give a prescription for identifying the '"false" poles.
S:(k) may have zeros in the upper halfplane and corresponding poles in

the lower halfplane. On the imaginary axis S;(k) is real and on the real
axis its modulus is equal to unity. If the wave vector k is replaced by
energy, we should remember that the & plane is mapped onto a two-sheet

E plane. Bound states correspond to poles on the left semiaxis in the
upper E plane. The poles on the lower sheet of the E plane correspond

to quasistationary states.

In what follows we will require the symmetry properties of scattering
phases. On the real axis the phase § is real, By (13.5) we see that
for real &

8 () = — &; (— &) (13.13)

Wave functions normalized to § (¢ — &) have the asymptotic expression

i~y Zsin(kr +8(0)— 3 ).

Using this expression, we can readily verify that as the sign of & changes,
the wave functions behave in the following way:

A1 (r) = (— 1)y 1 (r). (13.14)

We have mentioned in the preceding that §; (k) is an analytic function in
the complex % plane. This holds true for any potential and is a consequence

For potentials vanishing for r >R there is an infinity of such poles /99—101/; in this case the distribution
of the distant poles is completely determined by the behavior of the potential for r — R. The poles
in case of a rectangular box were treated in detail in /102/,
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of the principle of physical causality.* In other words, the cause must
precede the effect. This is an inevitable prerequisite of any physical theory,
and it is found to have very far-reaching consequences. We will now try
to sketch a rough outline of the formal results emerging from the causality
principle.

We write the expression for the wave function for given energy E at
some distance r = a outside the effective range of the potential:

_iEt
(e'ts — S (E)eltay e *

The first term corresponds to the incoming wave and the second to the
outgoing wave. A spatially localized wave packet is given by

S dE' (f(E’) e~ — g (E") e'¥'0) e—‘_E"l,g (E') = S(E')F(E"). (13.15)

0

The wave packet describing the incoming waves is clearly

o "y

—ik'a— £
O, (a t)=§ dE'f(E')e T,

and the wave packet of the outgoing waves is

% o B
Dou (@, ) =S dE'g(Ee" "~ F .
[
Since the system is linear and the amplitude of the divergent outgoing

waves is fully determined by the incident wave, we have the following
relation between the two amplitudes:

Qoue (a,8) = S H{t—t)®y, (a,t)dr, (13.16)

—c0

where H is some transformation kernel.

It is here that the causality principle enters the discussion: the amplitude
of the outgoing wave at the time ¢ can depend on @, (#) only if t >¢. We
must therefore have

H{t—¢)y=0 for ¢ >t (13.17)

Introducing the Fourier component # (w) of the operator H,

H(t) = °§ dwe=iot  (w), (13.18)

—00

we easily find from (13,15) —(13.18) that

h(E) = 5= €% S (E). (13.19)

® This idea was first advanced in /103/, but the original proof is not fully rigorous. The rigorous proof
first given by Van Kampen /104/ requires knowledge of comparatively fine theorems of the theory of
analytic functions.
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Inverting (13.18), we get

et S (E) = + S £ H (1) dr.

—

In the general case, this expression sheds no light on the properties of
S (E). By the causality principle, however (see (13,17)), we know that
H(t)= 0 for 1< 0. The integration should therefore start from zero:

emaS(E) =+ S e'E'H(T) d. (13.20)

0

In this case the function in the right-hand side is clearly analytical in the
upper E halfplane, where €£* decays exponentially. In the & plane this
corresponds to the first quadrant. Thus, using the symmetry properties

of S (k), we find that S (k) is analytic in all the quadrants. The exponential
factor e¥*s in (13.20) accounts for the phase lead of the wave reflected from
the spherical surface r = a relative to the wave passing through the scatter-
ing center /105/ (the corresponding path length difference is 2a).

For a plane wave scattered at a finite angle 8 we should choose the
shortest path (corresponding to maximum phase lead) through the scattering
sphere which reaches the observer
at an angle 6 (Figure 9). This path

length is less by 2asin—°2— than the

length of the path through the
scattering center. Therefore, in
the upper E halfplane, it is the

. slka sin L . .
function e if(E,8) that is analytic,

and not the scattering amplitude
a f (E, 9). Hence it is clear that the
simplest analytical properties are
characteristic of f(E, 0) (it is analytic
in the upper E halfplane),
The caussality principle can be
FIGURE 9, applied to derive the analyticity
properties of the scattering amplitude
from momentum transfer [106/.
Note that the validity of our assertions on analyticity is independent of the
particular form of the potential for r << a. Moreover, even the assumption
that the wave function inside the interaction range (r < a) satisfies the
Sch. Eq. is unnecessary, In other words, the analyticity of S (E) in the
upper E halfplane is a direct consequence of the causality principle alone,
This problem is discussed in /107, 108/,

§ 14, "FALSE" POLES

We have already mentioned that in the upper halfplane S;(¥) may have
so-called 'false" poles* on the imaginary axis, which do not correspond to

® The existence of these poles was first pointed out by Ma /109/ [who called them “redundant"],
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physical bound states. The nature of the ''false' poles can be understood if
we recall the definition of S, (t): we started with two independent solutions

nl
of the Sch. Eq. x{)and y{ with asymptotic behavior ~ei‘('" -5) for
large r; since we are dealing with scattering problems, the asymptotics is
computed for positive k., Then these two functions are formed into a
solution which is regular at the origin,

A (1) =23 — Si (k) x4y,

For this function to vanish at r = 0 it is necessary and sufficient that S;(%)
have the form (13.2), The points in the upper k halfplane where the
denominator of (13.2) (x§P’ (0)) vanishes correspond to bound states. These
points lie on the imaginary axis in the upper halfplane. In addition to poles
of this kind, S;(k) may have poles associated with the poles of the function
%7 (). By this we mean those points of the complex k plane where % as

a function of %k is identically infinite for all r. These points, clearly do not
correspond to any bound states.

Consider the particular case of a potential V () =—Ve 4. The Sch. Eq.
takes the form
r
@)+ R+ Ve S Ixe(r)=0 (14.1)

r
and substitution of a new variable y = 22 YV, * reduces it to Bessel's

equation

. 1 .. 1p)¥

% 6) + 5 %6 +[1 =] v, =0, (14.2)
where p = 2ka., As two independent solutions of this equation we may take
Bessel's functions J;, (y) and J, (), defined in the usual way:

m veam 14.3
Jv(y)="§o(—1) (%) mlI‘(mfi-v+1)° (-9

Using this expansion, we easily find the asymptotic form of the functions
Jiip (y) for r—oc (i.e., when y— 0)

eFikr

J::pg~(m*‘”m). (14.4)
We can thus define the functions y{® (r):
XD () = T (1 Fip) (VaVet® J11p (20 Y Ve~ %) (14.5)
X(.*)(f)'-—e*w for r—oo.
Using definition (13.2), we find
s(k)=§—%{%(}’a’_%)""’f—_’f‘%, %o =2a Y Vo (14.6)

The case of attraction corresponds to positive values of V,, i.e., the
argument g, of Bessel's functions is a positive number. For real &, by
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definition, & (k)is also real and we clearly have [S (4= 1. On the positive

imaginary axis ip = — i2ak =+2alk| and S (k) has poles at the points %,, where
Jllknlﬂ (2(1 V_V—o)=0. (14.7)

These poles clearly correspond to bound states, since the wave function

1 -
X;.(f) = m%ﬁ)—'xiﬁ Py ‘Xf;"(’):
%% (r) ~e T oos A (r)~0, r—0
satisfies the two boundary conditions at these points,

In addition to poles of this kind, § (k) also has poles at the points

1+ ip=1—2alkm =—m (m=0,1,234,...),

where I' (1 + ip) goes to infinity. This infinite sequence of poles does not
correspond to any bound states, and they are thus ''false" and "redundant'. To
verify this, we write the expression for the wave function, Using(14.5), we find

Xy 0) = (VAT (1 + ) [y () — 22080 (14.8)

At the points & = k, the factor T (1 4 ip) goes to infinity, The expression in
brackets 1n (14,8), however, vanishes on account of the well known property

of Bessel's functions J,(y) = (—1)W,(y), where [is an integer,
Using the expression for Bessel's function with negative index,

Jo (y) = cos nv/, (y) — sin N, (y)

where N, (y) is Neumann's function, we obtain without difficulty

Tag ()= lim 3, ()= — A @YV [ Nnia ) = I ) 'j::(‘y”;’]. (14.9)

This solution is regular at the origin, but for r — o it increases exponen-
tially, X, (r) ~ e*w" for r — oo, and therefore does not correspond to any
bound state.

Let us now try to elucidate the general reasons for the formation of
"false' poles. We already know that they are associated with the pole of
the function x{?. The function y{’ is defined as that solution of the Sch. Eq.
which for large r behaves on the real k axis as e¢“*, If, however, %{’is
infinite somewhere in the complex & plane, the asymptotic expression
%) ~ e breaks down when we move from the real axis into the complex
plane, since e~* is bounded for all %k, except k = io. The asymptotic form
of this function is not conserved if the exact expression for this function,
besides the term e“*, also contains other terms which, though safely
ignorable on the real axis, are not so in the entire complex plane.

In the case under discussion {an exponential potential), these terms
have the form

o mr
o ra+ip) -~
xﬁ)=¢ llr(l +El(—l)m(a’vﬂ)mmlr<$u+lz+i)e a ). (14.10)
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On the real axis, for sufficiently large r, the second term in (14.10) is
always ignorable. On passing to the complex plane, the situation is
essentially altered by the poles of the gamma function on the negative
semiaxis. At the poles the second term in (14.10) is dominant compared to

unity, despite the smallness of the exponential terms ¢ al’

We can now answer the question, when do the ''false" poles form ?
Indeed, we see from the preceding, that a sufficient condition for the
absence of ''false" poles is the applicability of the asymptotic expression
%§? ~ e in the entire halfplane, since in this case %{? has no poles.

Hence it follows directly that if the potential V (r) is identically zero
outside a sphere of any arbitrarily large radius R, there are no 'false"
poles. * The point is that in this case for r > R the function x{’ (like ¥
is a superposition of Bessel's functions for which the validity of the
asymptotic expressions in the entire complex plane is proved without
difficulty (e.g., using expression (14.3) which is valid everywhere).
Thus, %’ has no poles anywhere in this case, and no ''false’ poles form.
This is readily checked for our example of an exponential potential by
cutting it off for some r = R. All the poles corresponding to bound states
are virtually unaffected, whereas the ''false' poles disappear.

We thus come to the following remarkable conclusion: when a potential
is cut off, all physically meaningless "false' poles disappear, whereas the
"physical" poles corresponding to bound states are virtually unaffected.
The latter point is quite understandable. If we cut off the potential some-
where far away, where it is small, this can hardly alter the physical
properties of the system, in particular the energy and the wave functions
of the bound states. A situation of this kind, when some sort of a cutoff
essentially simplifies the analytical properties of functions without affecting
their physical meaning, is often encountered in modern theoretical physics.
The example of 'false'’ poles is probably the simplest in this respect as far
as mathematics is concerned.

The above considerations suggest the following prescription for the
calculation of the energy of bound states in case of potentials which do not
vanish identically at infinity: the potential should be cut off at some r =R,
the position of the poles of S (k) in the upper % halfplane should be found,
and R should then be allowed to go to infinity; the limits &, (R)lr e give the
energy of the bound states.

The problem of the ''false' poles of the S-matrix is closely related to
the problem of reconstruction of the potential U (r) from the scattering
phase 8§ (®), e.g., the s-phase 8, (¥). In distinction from the case of
classical mechanics, where scattering data completely determine the
potential U (rj /110/, the solution of this problem in quantum mechanics is
not single-valued, Bargmann /111/ gave examples of various potentials
and even families of potentials which all produce the same expression for
the scattering phase &,(k). Different potentials U (r) in general correspond
to different subdivisions of all the poles of Sy(k) = &®® into "true' and
"falge''. This property, and some other properties of Bargmann potentials,
are treated in /112/ (see also /113/). It is remarkable that for some
potentials /114/ the phase §(k)=0, i.e., no s-state scattering is observed
for all k.

® It can also be shown /101/ that "false” poles are absent for potentials which fall off at infinity faster
than any exponential €'¥",
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The determination of potential from scattering phases was completely
solved by Gel'fand and Levitan /115/ and by Marchenko /116, 117/, who
showed that for single-valued recovery of the potential, the scattering
phases should be supplemented by the energies of the bound states and the
coefficients A, which specify the asymptotic behavior of the corresponding
wave functions for large r:

c—x,‘r
At

§ 15, PROPERTIES OF RESIDUES OF §;(k)

Consider a bound state of momentum ! and binding energy E,= %

The wave function of this state is assumed to be normalized:

00

Sx ) fPdr =1.

We first consider the case when for r— o the potential U (r) falls off faster
than 1/r, Then % behaves for large r as

x,~A;e-"’. (15.1)

where A;is a constant determined by the form of the potential.
As we know, S;(k) has a pole at the point & = ix:

Sit) = =t (15.2)

A universal relationship can be established between C; — the residue of
S; at the pole — and the constant A; entering the asymptotic expression for
the normalized wave function of the bound state, *

Ci= (1Y 1|42 (15.3)
Making use of this relation, one can reach certain conclusions concerning
the properties of the bound state from the behavior of scattering phases,

In field theories analogous relations are used to determine the coupling
constants,

We can now proceed with the proof of (15.3). The solution which is
regular at the origin and behaves asymptotically as

%41 (r)~const .[g"‘(""‘ :'—) —5¢ C ."‘T) J

*  This relation was first derived by Heisenberg /83/ and Méller /118/; also see /119/.
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should coincide, apart from a constant factor, with the function ¥, of the
bound state for & = ix. We normalize %, so that this factor is unity:

limy,, =
ot Xt = K

This condition clearly corresponds to the normalization

1\l
= Are — S ) (15.4)

Consider an infinitesimal neighborhood of the pole:
k=im+e >0 ¢e>0,

— )} '
xu(r)=Al(elkr_(_E?_ee—1kr) . (15'4 )

We will use the law of particle number conservation which is readily seen
to apply to both real and complex k:

9 R _IEt . | =t .o "
w | e Pl =g G — ki) o (15.5)
[1]

First consider the left-hand side of (15.5). The energy E is a complex
number in our case:

E——-—(iu—{-e)’——-—(x’ e’)+i—”‘;—xe,
so that

anxe!

%§|Xu|’e m dr——»g-xe(l—lAgl "”R). (15.8)

Here the radius R is taken sufficiently large to justify using the asymptotic
expression (15.1) for the wave function,
Now consider the right-hand side of (15.5). The residue C; is clearly
a pure imaginary quantity:
Ci=—C,
This follows from the fact that 8§ is real for all imaginary & (see § 13),

Using this fact and inserting (15.4') in the right-hand side of (15.5), we
obtain to terms linear in e

1E¢t
n, - .. " pr} i —1 14,1 5
—2‘”."" TI’(xuxu'— YarKpr) lrmr— 8 mu{ dCatb ) A~ - 3—' R}n
Comparison with (15.6) yields
Cr=(— 1) A,

which completes the proof.
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Relation (15.3) can be generalized to the case of a potential with a
Coulomb tail, U (r) ~— —;3 for r— o /120/. The asymptotic expression for

the wave function in this case is

%, () ~ A (xr)" €™, n =g, (15.1')

and relation (15,3) takes the form
Cxl - (__ l)lﬂ i2-‘zne—1n~n| Ax’ |2. (1 5.31)

This theorem makes it possible to establish the upper bound for the
absolute value of the residues €;. Indeed, suppose that we know that the
potential U (r) has a finite range R; in this case for r > R the wave function
of the bound state must have the form of the free-motion wave function

3 k
%, (r) = Aikrh{" (kr) = At I/ il "' rH(‘) 1 (| knt[r) ~ A\ tnil7, (15.7)

The normalizing constant A, clearly depends on the form of the potential
U(r). We rewrite the normalization condition in the form

oo R 0
= (1m0 far = § lx,l’df-i-k'ilml’lhf"l’r’dr. (15.7')

All the terms in the right-hand side are positive. We therefore obtain the
inequality

[ Ani l’<—wl—— = MR:[_(H:”_, (k..lR))*+H"’z- _liﬂ(i) H—%]}T‘ (15.8)
K § | KD (3 r3dp :

For I = 0and {= 1 we thus obtain*

| Ao |'<2ue""z (15.9)

| As |’<2n¢““‘ (15.9")
+

%l

The upper bound for | 4,{* and correspondingly for C; is thus determined
by the range R of the potential, the energy of the bound state, and the
particle mass m,

In the limit for R — 0, (15.9) takes the form

14,* < 2% and A" < 0. (15.10)
|4, is of course nonnegative. Therefore, the above inequality implies that
a potential with a range R — 0 precludes existence of bound states with I = 0.
The inequality for A4, in the case of a Sch. Eq. with singular potential

reduces to equality, since the wave function of the bound state has the

* These inequalities were derived in /121/,
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form Ae> in the entire space and the first term in (15.8) identically
vanishes, so that

|Aof* = 2.

If the range R of the potential is finite, |A4,{* is strictly less than 2xe¥R,
This fact can be used in estimating the range of the potential from scattering
data. Indeed, given the scattering phase for real #, we can extrapolate the
function e2® for imaginary k, This will give the residue C;, and thus [A[*.

If we find that |4, [* < 2|» |, a point potential is possible; if, however,
|4 |* >2|%|, the potential has a finite range.

Consider, for example, the interaction between a neutron and a proton
in the triplet state. The scattering phase for a state with zero orbital
momentum is given by [122/

keotd=— 1 4 Lrom, (15.11)

where a is the scattering length {a = 5.4:10"¥¢m), and r, = 2:10"¥cm is
the so-called effective radius. In the case under discussion, the neutron
and the proton possess a bound state (a deuton) with binding energy & =
=2.2MeV. Using (15.11), we obtain the following expansion near the pole
at k= 4ky = i| k|, which corresponds to a bound state:

S=ee . Blbl (15.12)
(k— ko)t — 20/ a)*

Hence we find (see (15.3)) that the normalizing constant of the bound-state
wave function is

a_ 20kl 2|k 15.13
|A| T my S T=rnlk]’ ( )

and expression (15.9) gives the following inequality for the interaction
range R:

e’lh'R>1—r‘olko|' (15.14)

Inserting numerical values for | k| and 7,, we finally obtain R >1,35.10"%3¢m,
The interaction range R can be estimated by an alternative technique.
In what follows we will prove the following strict inequality:*

B L R— L sin(2kR +28) >0. (15.15)

Inserting the phase 6 from (15.11) and taking the limit ¥ — 0, we see that
(15.15) reduces to

a

R[x—%+_‘3(£)’]>%, (15.16)

* This inequality was first obtained by Wigner /123/ proceeding only from the causality principle.
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We now proceed to prove (15.15). The Sch. Eq. for two close energy
values E and E, are

. 2m
xg— g (U—E)y1=0,

Xy, — 2 (U — Ex) 1z, = 0.

Multiplying the first equation by Xg,, the second by %e, and subtracting one
from the other, we obtain

. .\ 2m
(XE,XE — XE'X.B,) = (El - E) Aelg,~

Integrating this equality over r from 0 to R and taking the limit as E, - E,
we find
n .. i . .
§ yidr = ﬁel,LmeTx—_E (g Xe— XeXe) g (15.17)

Since for r = R the potential is zero, the wave functions ¥ can be expressed
in the form

g = %sin(kr—i—b).

Inserting this expression in (15.17) we obtain after elementary manipula-
tions /124/

§x;_,dr=-:-l-{(R+ﬁ)——%k-sin2(kR+b)}. (15.18)
[}

The left-hand side is a priori positive., The right-hand side is thus also
positive, so that inequality (15.15) applies.

In conclusion of this section note that the above results apply only to
the Sch. Eq. with a potential. They should be modified if we are dealing
with a system of particles capable of mutual transformations, This
problem is discussed in more detail in Chapter 8.

§ 16. DISPERSION RELATIONS

We will now consider a few examples when the general analyticity
properties of S;(k) give useful relations for the wave function.

We have already mentioned that S;(k) are analytic functions of 2 whose
poles in the upper halfplane are concentrated on the imaginary axis only.
Some of these poles correspond to bound states, but there are also some
redundant poles.

Near the n-th pole

5; (k)

c :
Su(k) = =% and 5 = 2i6;(k) = — 55+ (16.1)
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We also know that in the lower halfplane the poles occur inpairs, symmetri-
cally about the imaginary axis; each pair corresponds to a so-called quasi-
stationary state. Moreover, poles may also lie on the imaginary axis in
the lower halfplane. These poles correspond to the so-called virtual states.
Each of these poles corresponds to a zero of S;(k) in the upper halfplane.
Near each of these zeros

S "
Si() = omt (k— ki) and = 208 (k) = k——ikm,' (16.2)

Let us first consider the case of an S-matrix with a finite number of
poles, Consider N, bound states, N, redundant poles, N, quasistastationary
states, and N, virtual states. In the upper halfplane there are thus (Vs + N/)
points where (16.1) is satisfied and (2N, + N,) points where (16.2) is satisfied.

Everywhere else S;(k) is bounded. Consider the integral

1=2i § 8 (k) dk =41 § 8, (k) db = 4i (8, (c0) — 8, (0).
—00 [}
For |k|— o0, S;(k)—1 +%;B—; = const (see Chapter 4). This means that

the phase §,;(k) — pn + B/k, where p is an integer and &(k) ~ k2. We can
therefore complete the integration contour in the upper halfplane and
calculate the integral, as all the poles and their residues in the upper
halfplane are known:

I =2ni(2N, + N, — N, — N,).

Equating the two expressions for /, we obtain a relation between the phase
at infinity and the number of bound and quasistationary states (we take
8 (0) = 0)

8¢ (00) — 8, (0) = 8 (00) = 5~ (2N, + Ny— Ny — N). (16.3)

In the general case, e.g., for a potential which vanishes for r > R,
there is an infinite number of poles. The number of bound states, on the
other hand, is mostly finite. The above reasoning breaks down in this case,
since the integral over the upper semicircle is no longer ignorable. Never-
theless, Levinson /126/ showed that in this case also one can derive an
expression relating the phase at infinity to the number of bound states:

3;(c0) — 8; (0) = — ntN,. (16.4)
We will now prove this important relation. Consider the function
Dy(k) = % (0), Di(k) = (—1)' D, (—#). (16.5)

Dy(k) is analytic in the upper k& halfplane; on the imaginary axis it has

zeros corresponding to bound states. By (13.2) and (13.3) S; can be written
in the form

D (k) 1Dy(—4)

Sl (k) = Dl(k) = (_ 1) Dl(k) .

(16.6)
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As before, consider the integral

T st
I= S Sl(k) dk = 4i (8 (00) — 8;(0)).

Expressing S; in terms of D; and completing the contour in the upper half-
plane, we obtain

____m D(—k | D® g °°D'_(k) o
I= _S”[D(_k)—i-mk)]dk.— 2_&D(k)dk— 4niN,.

Comparison of the two expressions for / gives (16.4).
This proof of Levinson's theorem* is clearly applicable also if the total
number of poles is finite. Comparison of (16.3) and (16.4) gives in this case

N,=N,+ N, +2N,. (16.7)

We thus established the following remarkable fact: for potentials giving
rise to a finite number of poles in the S-matrix, the number of redundant
poles is completely determined by the number of bound, virtual, and
quasistationary states. The simplest case Ny=1, Ny=N;=0 (N, =1,

Ny = Ngy = 0) thus leads to a single redundant pole and corresponds to the

""effective range approximation' [112, 132/ (k cot § = — —:—z- + -‘?rok’ for ro>0).

We can now proceed with the derivation of the general dispersion
relations for Si(k). We know that S, (k) = €3 S () is analytic in the upper
k halfplane.

Consider the integral

S (—g—"_%— 8a (k) = S71 (k), (18.8)

where 2z is some point in the first quadrant of the % plane. Completing
the contour in the upper halfplane and noting that integration along the
semicircle gives a zero contribution, we can write that this integral is
equal to

2xni X(sum of residues in the upper halfplane) =

8,(2) Res g, (k)
=2m{ : +Z ey .=,,n}- (16.9)

Here the first term corresponds to the pole at # = z and the sum corre-
sponds to bound states. Let now the imaginary part of z approach zero,
so that z approaches a point z, on the real axis (Figure 10)., Clearly

(=

T e ga(W)dk g (Zn)
_vae—z)k—pSk(k w T

Another fairly simple derivation of Levinson's theorem can be found in /127/. Note that this theorem
can be extended to a2 more general class of Hamiltonians /128/. A generalization of Levinson's theorem
was derived in /129, 130/. Finally, in /131/ this theorem was proved for the relativistic case.
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where P signifies that the integral is to be taken in the sense of its principal
value. Equating this expression to (16.9), where we should also take the
limit z— z,, we finally obtain /104/

Glzo) 4 T gikdr Res g, (k,)
20 ==FP S FE—z)k ,?kn(lzn_h).

Using (15.3) we write this so-called dispersion relation for g (%) in the form

ga(20) L Pt &® L g —gy el g (16.10)
2z, S (F=zo)% z,)k Z k, (B, —z0)

where A, is the coefficient before ¢! in the normalized wave function of
the bound state. The sum, as is clear from the derivation, is extended over

all the bound states which exist for the given orbital momentum value.

®

i 24
*
\/z;
| ]
FIGURE 10.

Having derived expression (16,10), we can write without much difficulty

ika 8in-
an analogous expression for f, (k, 0) = em “H f(k, 8), where f is the scattering
amplitude,

F(k,6) = ﬁ‘z_‘.o(zw 1) (S1 (k) — 1) Py (cosB).

This dispersion relation has the form
(]
) ‘lAnll’e I]kulasln—’—

e — . (16.11)

fa (¥ 9)
e %

falk, ) = 2P S 2 @ + 1) Py (cos®) ¢

Here the sum in the second term is taken over all the bound states of the
system: over all values of the orbital momentum ! for which bound states
exist and over all states (the index a) for fixed I,

The above formula can be rewritten in a somewhat different form if
we use the relation

fa (—k, 6) = F (&, ).
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Then (16.7) takes the form

1 F rf &0 f.*,0)
fulte, 0 = P b [ S — ]~
[\

0
—3 | Ryl asin—
|AgP=pie

knl (o — k)

— 3} 2L+ 1) Py (cosb) (16.12)
ni

The advantages of this expression are that the integration is carried out
only over the physically meaningful positive values of the wave vector.
Dispersion relations which follow from the analyticity of S (k) in the
upper halfplane impose fairly rigid constraints on the energy dependence
of these functions and on the energy dependence of the scattering amplitude,
In particular, as we see from (16.12), they permit reconstructing the real
(imaginary) part of f, if we know its imaginary (real) part and the position
and the coefficients A, of all the bound states. The dispersion relation for
zero angle 6 = 0 is of particular importance, since in this case the depend-
ence on the interaction range drops out and the amplitude f (&, 0) can be
expressed entirely in terms of experimentally observed quantities. To
prove this point, we return to the optical theorem of the previous chapter

Imf (&, 0) = £ 6 (A),

where o (k) is the total cross section., Using the optical theorem and
dispersion relation {(16.12) for 8 = 0, the real part of f (£, 0) can be written
in the form

0 ©o I4+1
1 , KIS (K o ta,p
Ref(k, 0) = 5P c k,,_(kZ—ReZ(ﬂ-i—l)(—kHL. (16.13)
1=0 ni\"nil

0

This relation expresses the amplitude § (& 0) in terms of experimentally
observed quantities:

f(k,0) =Ref(k, 0)+ipc(h), (16.14)

where the real part is given by (16,13).

Relations (16.10) —(16.14) were derived for the simplest case of potential
scattering. However, analogous relations can be obtained for much more
general assumptions concerning the particle interaction. Dispersion
relations have a multitude of uses; for example, one of the main problems
of nuclear physics and elementary particle physics is experimental deter-
mination of scattering phases, as they yield valuable information on the
nature of particle interaction., Phase analysis (i.e., determination of
the phases §,; (k) from experimental cross section data for a fixed &),
however, is not a single-valued procedure. This is particularly evident
for the case of spinless particles: the cross section o (0, #) is readily seen
to remain constant when the sign of all the phases is changed. This means
that if we have found a range of phases which give a good fit between the
theoretical and the experimental cross section o (8, ¥), the same fit can be
obtained by changing the sign of all the phases. There is absolutely no
possibility to determine the true sign of the phases §; (k) from the cross
section ¢ (8, k) at the same energy. This ambiguity is resolved only by

75



Ch.3. ANALYTICAL PROPERTIES OF THE WAVE FUNCTION

using the dispersion relation (16.13) which defines f (¢, 0) and thus gives
the correct sign of the phases if the total cross section ¢ (k) is known for
all k and the parameters of the bound states are also given,

In conclusion note that in the derivation of the dispersion relations we
only used the analyticity of S; (k) in the upper halfplane. Noassumptions were
made concerning the field acting on the particle, This is not accidental.
The point is that irrespective of the actual potentials, any physical theory
should satisfy the causality principle. This leads, as we have shown in §13,
to the analyticity of S, (k) in the upper halfplane and thus ensures the existence
of dispersion relations, *

In deriving the dispersion relations, we always have to consider the
convergence of the integrals at the upper limit. For example, the integral
in (16.13) converges only if the total cross section for large k decreases
faster than 1/k, and this is not always so. Therefore we are generally
dealing with dispersion relations not for amplitudes but for some functions
with better convergence. Good convergence is ensured, say, by the ratio
(f;‘f_%‘ or by the difference f(k, 8) — feom (b, 8), where fgm (& 6) is the
amplitude computed in the Born approximation. The results of the next
chapter show that this approximation is quite adequate for 2 — oo, so that
the last difference rapidly converges for large k.

* This problem is treated in some detail in /104—106/.
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Chapter 4

GREEN'S FUNCTION AND PERTURBATION THEORY

§ 17. INTRODUCTION. GREEN'S FUNCTION
OF THE RADIAL SCHROEDINGER EQUATION

We have so far dealt only with the homogeneous Sch. Eq. In some
problems, however, we have to solve the inhomogeneous Sch. Eq. Two
very important classes of problems are in fact reduced to inhomogeneous
equations,

First, these are the problems of perturbation theory, when we are
looking for corrections to the wave function associated with small perturba-
tions of the system Hamiltonian. The inhomogeneous term in the Sch. Eq.
is proportional to the unperturbed wave function. Second, these are
problems associated with reactions, i.e., with particle creation. Inhomo-
geneity in these problems plays the part of a source (or a sink) of new
particles.

Handling of inhomogeneous equations requires thorough knowledge of
the apparatus of Green's functions. Note that this apparatus is also
applicable to the solution of equations which are much more involved than
the Sch. Eq. (e.g., the equations of quantum field theory), and it is
currently used on a very large scale almost in all subdivisions of theoretical
physics.

We will only consider Green's functions of the Sch. Eq., The simplest
of these is Green's function of the radial Sch. Eq., which is discussed in
§ 17. In § 18 and § 19 we consider some properties of Green's function
of the three-dimensional Sch. Eq. In § 20 an expression is given for
Green's function of several free particles. Then we pass on to a discussion
of perturbation theory. In § 21 and § 22 we consider the application of
perturbation theory in the coordinate and momentum representation. The
next section gives simple examples illustrating when the perturbation theory
is inapplicable and the entire perturbation-theoretical series must
be summed,

The Feynman diagram technique, which presents a graphic picture of
the structure of perturbation theoretical series, is derived for some
particular simple cases in § 24, The last section (§ 25) of this chapter
investigates the properties of the time-dependent Green's function.

The inhomogeneous Sch. Eq. is written in the form

(- 2a+v—E) -9 (17.1)
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Here Q is a function, called the source function or simply the source.
The wave function ¥ of this equation is subject to the usual conditions of
single-valuedness and boundedness.

For a function satisfying (17.1) the probability density, in general,
is not conservative. Indeed, the time-dependent equation equivalent to
{17.1) has the form

. _ Bt
iﬁﬂ=(—-.2”71.A+U)¢+%e n, (17.1")

We thus get in the usual way

LEt 43
] [/} n » G Y *
zh7$|w<r,t>|'dr=——2;§dsw Vip— $VY) + 5(‘3—e oy — L p)dr.

_

Separating the time, $(r, ) =9 (r) e A , we find that even in the stationary

case the flux through a sphere of large radius does not vanish:

yas={(Fro—Fve)e

Q is thus interpreted as a source or a sink of particles.
Equation (17.1) will be solved using the apparatus of Green's functions.
The Green's function of the equation

L,Xk(r)=[-:—:,-+(k’-—V(r))]X,,(r)=0 (17.2)

is by definition a symmetric function of two variables G, (r, r') which satisfies
the equation

LGy (r,r)=8(r—r). (17.3)

The usefulness of this function is obvious. Indeed, using this function,
we write the general solution of the inhomogeneous equation L,¢ = Q in
the form

co

o) =% () + {d' Gar, 1) QY (17.9)

0

where ¥ (r) is the general solution of the homogeneous equation (17.2).
That ¢ is indeed a solution of the inhomogeneous equation can be verified
without difficulty:

Lo=La+ {dr Q) LGe(r,r) = droede—r)=.
[} [

According to a known theorem the general solution of an inhomogeneous
equation is a sum of the general solution of the corresponding homogeneous
equation and any particular solution /of the inhomogeneous equation, so that
(17.4) is in fact the general solution of the inhomogeneous equation when %
is interpreted as the general solution of the homogeneous equation (17.2)
satisfying appropriate boundary conditions.
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Let us now find the Green's function of equation (17.2). In our case, this
is a fairly easy undertaking. Let r=r/, so that

LG(r,r"y=L.G(r,r')=0.

Since the Green's function is symmetric in relation to its arguments,
it clearly has the form

W (NP (') for r > r',
G (r 1) = * £ ) (17.5)
1P () AP (r') for r ',
where X and ¥ are any two solutions of the homogeneous equation. For
r=r (17.3) must be satisfied. This imposes additional restrictions on the
choice of the functions y® and %x®, Indeed, condition (17.3) implies that

r+A
\ arLGutrory =1

r—A

(17.8)

for any arbitrarily small A. Let us evaluate this integral. If x == y®,
the function (17.5) is bounded and continuous, but its derivative is discon-
tinuous at r = r’, This signifies that (¥#* —V) G, is bounded and integration
over an infinitesimal neighborhood of r gives a zero contiribution in (17.6).
Relation (17,.8) thus can be rewritten in the form

r+4A
§ dr'd%a.(r,r')=1. (17.6')

r—A

We compute the first derivative:

X () AP () =4 () P (r)s

_d— N r > r r'—r (17 .7
& Ge(r,r') X (7)) %0 (') — AP (1) 4 (). )
r<r r'—r

It is discontinuous at the point r = r’ and is thus a step function. The
second derivative % Gi(r, r') is therefore infinite at r = r’. The integral
in (17.8) is clearly equal to

r4-4A
{ @ 260 0,r) = 4 1 0 — 2P 01 (0.

r—A4

Function (17.5) is thus Green's function if

A () AP (r) — % (1) % (r) = 1. (17.8)

This condition is met by two pairs of solutions having the asymptotic
expressions*
+i (kr— i“— +8; )

YP~—e , x;’)~—%—sin(kr—fzi+6;). (17.9)

Latt)

® We take the potential in the form V (r) =V, (r) + s
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Inserting these functions in the Wronskian (17.8), we readily see that it is
equal to unity at infinity, where the above asymptotic expressions apply.
Since the Wronskian is independent of r, (17.8) is valid for all r.

Thus, two Green's functions of the homogeneous equation have the form

Gﬁli)(’r")—":— %"’z—xﬁ)(rﬂxhl(’d» (17-10)

where r, and r¢ are respectively the larger and the smaller of the two radii
r and r’; the functions ¥ and ¥, are defined by their asymptotic expressions

=l
x}_f_;(r)~e*‘(’” Ead! )~ Y %sin(kr-——’;—l-kb,).

Corresponding to these two Green's functions we have two independent
solutions of the inhomogeneous equation

oo

o ={ e ree =

, - (17.11)
-V 2w olewrer + wol e e er)
[ r

First, direct substitution will show that these functions indeed solve
the inhomogeneous equation. Since %, and % behave for r-» 0 as r+! and
r, respectively, ¢ are regular at the origin if Q (s) increases for r—0
not faster than 1/r*, At infinity the second term in (17.11) approaches zero
(if, as is usually the case, Q(r) falls off sufficiently fast with increasing r)
and ¢{f has the form of an incoming or an outgoing wave:

nl 0
Pl () ~ — _g__z_eti(lu——’—%[)g dr % (r') Q (r'). (17.12)

00
0

Note that besides Gif’, one can construct various other Green's functions.
We will not consider these alternatives, however, as they are either linear
combinations of the functions G or generate solutions of the inhomogeneous
equation which do not satisfy the boundary condition for r— 0,

The most general solution of the inhomogeneous equation can be now
written in the form

Bl () +agfP () + (1 —a) o7 (1), (17.13)

where o and f§ are arbitrary constants. The amplitudes of the incoming
and the outgoing currents, in general, are not equal on account of the
second and the third term. In other words, the inhomogeneity Q in the
Sch. Eq. corresponds, as we have already noted, to introduction into our
physical problem of a mechanism which is responsible for absorption or
emission of particles, It should be stressed that for a given source Q the
creation (or absorption) probability may vary between wide limits. It is
entirely determined by the boundary conditions at infinity, i.e., by the
values of the constants « and 8.

For negative energies, the ordinary Sch. Eq., as we know, may have
solutions which satisfy the boundary conditions only for some discrete
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energy values. In the inhomogeneous Sch. Eq. the situation is different:
for any energy E we always have a bounded solution ¢{f which vanishes for
r—0, That the solution is regular at the origin is proved in the paragraph
following equation (17.11), That ¢§ is regular at infinity follows from
(17.12), where we should put £#= i|k|. Notice that the particle current at
negative energies is identically zero since the wave function (¢ ~ et*lr)
in this case is real. It describes particles localized in space around the
source; these particles cannot escape to infinity for lack of energy.
However, for E which is equal to an eigenvalue of the homogeneous equation,
the solution g does not exist whenever Q is not orthogonal to the bound-
state wave function.

Indeed, let E, be the energy of a bound state, andg.and ¢ solutions of
the homogeneous and the inhomogeneous equation, respectively:

¥+ E—V)9=Q 9t F(En—U)gn =0,

Multiplying the first equation by s, the second by ¢, and subtracting, we
integrate the two sides of the equality over r from zero to R. Seeing that
both solutions are regular for r— 0, we find

R
r =3 Q) @u(r) dr'.

[]

@' Pn — PPn

For R —> oo the solution ¢ should remain bounded and ¢. should decrease
exponentially; the left-hand side therefore vanishes for R — 0. Thus, if
¢ exists, we inevitably come to the condition

Car @ ryen(ry=o. (17.14)
]

§ 18. A REGULAR METHOD OF DERIVING
GREEN'S FUNCTIONS. GREEN'S FUNCTION OF THE
THREE-DIMENSIONAL SCHROEDINGER EQUATION

In the previous section we derived an expression for the Green's function
of the radial Sch, Eq. We used a typical ''pedestrian" method. In more
complex cases, such ""pedestrian'' methods are much too tedious and a
better approach is to use a general algorithm for the construction of
Green's functions.

The underlying idea of this technique is surprisingly simple. Consider
a differential operator L. The eigenfunctions ¢, satisfying the boundary
condition constitute a complete system:

L (x) = 8. (x); D19 (0) @ () =B (x—x). (18.1)

We now form a function

P (%) @, (%)
-2

G(x, x') =2

» (18.2)
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which is clearly a Green's function, since by (18.1)

. (¥
LG x) = 32O

= Z Pe (x) @y (x)y=8(x—x).
[ 3
As an example, we apply this method to the three-dimensional Sch., Eq.

Hyp = (= g A+ U) ¥ () = By, (r). (18.3)

The complete set of orthonormal solutions of this equation, as we have
shown in Chapter 2, comprises the functions of the discrete spectrum and
the continuum:

Vi (F) = xn;r(r) Yim (_;_)' P (r). (18.3")
We will now construct the Green's function of the equation
(H — Eo) b, (1) = (— 207 A+ U — Eo) b, (r) = 0, (18.4)

lkl

where E,is some fixed energy Eo=2—”:’.
According to the general prescription, we first find a complete set of

eigenfunctions of the operator H — E,. We start with the fact that the

functions (18.3') constitute a complete set of solutions of the equation
(H — Eg)%e = (E — Eg) ¥&.
We now write

+ ’ 2m
G%o)(’v')'—"—jr

{Zvnlmz:)wilzm(r') +Sdk (i)(’)k‘f(t)..(")}‘ (18.5)
nim CY xér

where y is an infinitesimal positive number whose meaning will become
clear from what follows; the summation is carried out over all the bound
states. Inserting explicit expressions for ¢4’ and integrating over the
angular variable, we find for the second term in braces

nd 18,
S (F)Vin () Q.7 57 (18.6)
where
+) ’ xu(r)xu(r)
Qi (r, ') = Sdk—Ti_; (18.7)

If r and r’ are so large that x can be replaced by their asymptotic
expressions, the integral in (18.7) is readily calculated:
1 °§ dk

QE:‘) (f, f’) —— o= k’ {(_ l) S; (k) el‘k(r+r’) Ik (r—r’)}.
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The integrand is exponentially small in the upper & halfplane (for r > r’), and
the integration contour can therefore be chosen as shown in Figures 11, 12,

The value of the integral is entirely determined by the poles of the integrand
in the upper & halfplane. These are the poles of S (k) for k = k,;, correspond-

ing to bound states, and the poles of the denominator for ¢t = + V& + iy.

Ant %7y

ety Vi Ty

FIGURE 11. FIGURE 12,

For @+ the poles of the denominator are situated as shown in Figure 11,
and the poles of S (k) lie on the imaginary axis, so that for r > r’ the integral
is equal to

. ~plir+r)
Q‘:} (r, r') = — 22_1"5 {(_l)lze—kg_.—k’- Res S; (k) lhﬁn —_
_ %o [(—1)' S, (ko) & ™) — ea.(r-r')]}. (18.8)

Hence for G&(r,r’) for sufficiently large r and r’ we have

GE)("’ f’) - ?;n_:zylm (%)Y;m ({;),17 X
im
x(-_:;,f(w>—"7’+a:)sin(k,r<__"2£+6,)), (18.9)

The first term in (18.8) canceled with the first term in (18.5) owing to
the relation between the residue of S (k) and the normalizing constant of the
bound-state function (see § 15).

We know from the previous section that Green's function of the radial

Sch. Eq. for large r and r’is

nl
G (r,r)=— %ei('”_ T 4) §in (lzr< - -’!21— + 6,) .

Therefore (18,9) can be rewritten as

o8 (rry=— 2 L6 (.1) Vi (L)Y in L), (18.10)

im

It is readily verified that this formula for Green's function is valid for
all r and r' if for G (r,r') we use the exact expression (17.10), Indeed,
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inserting (18.10) in the Sch. Eq. we find

E[- 43 08)+ B v

== B¥in(F)¥in () e[ = G+ V o+ L — ] x

r

/ « yry 1 , ,
bd Gif) (rr') = EY,M(—;—) Yim (-’-;—-)—'—,b(r—r )=8(r—r).
Here L? is the operator of the square of the orbital momentum:

, 1 (. o9 1
LYim= —[m%‘(s‘“e?‘e‘) + ;ﬁ.ﬂ—ew] Yim=1({+ )Y tm.

Moreover we used the obvious equality which follows from the completeness
property of the spherical functions Yim:

Ym0, 9) Yim (', @) = 8 (cos8 — cos8) & (9 — ¢'),

im

where 0, 0’, 9, ¢’ are the polar and the azimuthal angles of the vectors 7’-, —'r—

If we take the minus sign before 7 in the denominator of (18.5) the
corresponding position of the poles of the integrand is shown in Figure 12,
Proceeding along the same lines as before, we get

8 (') = — 2 S 260 ) Yin -5 ) Vi (57)- (18.11)

Clearly
GE) =Gy, (18.5")
This, however, is also apparent from the general expression (18.5).

Using (18,10) and (18.11) we write the general solution of the inhomo-
geneous Sch. Eq.

(- A+U—E)vin=0()

in the form

VB () = e, (7)) + Sdr’ G (rr) Q(F), (18.12)

where $g,(r) is the general solution of the homogeneous equation,
For large r Green's function can be written as

G (P, r) ~ 72’;‘/% Tio-g}n}’,,,.({-) Yfm(—r'-:-) ’i, X

), 2m etthe o ). (18.13)

xXe Y (1) = 57— thy =
r

In the derivation we made use of the known properties of spherical harmonics

and of the definition of orthonormal continuum functions w;‘.i) (r) (see § 10,

§ 11).
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From (18.13) we see that the solution of the inhomogeneous equations
behaves asymptotically as

Lher
P (), (1) + 22 (@) ¥, (1), (18.14)
00 V-
i.e., inhomogeneity gives rise to incoming or outgoing particle currents,
so that, as with the radial equation, it can be interpreted as a source (or
a sink) of particles.

The meaning of the infinitesimal constant y introduced at the beginning
of this section is now quite clear. If it enters (18,5) with the plus sign, we
obtain the function G® which generates solutions corresponding to outgoing
waves, If y is preceded by minus sign, we obtain the complex conjugate
function G which corresponds to incoming wave solution.

In some very simple cases closed expressions for Green's function can
be derived, For a free particle (U = (), the Green's function is

, 2 Il k| r-r'|
G(Et)(r’r)zh_:”_ﬁelr_r,l. (18.15)

In case of a Coulomb potential U = ——%, the explicit form of the Green's

function was derived in /133/. A simpler method of derivation of this
Green's function will be found in /134/. We give here only the final result:

(€) () (e) n_ 2m T(1—in
3 (f:f')=0£111(f'; r)= Fé_ﬂrfﬁl
a a

xT‘k—(-—-@+E¥-)W‘m%(—1kx)Mm_%_(—-iky). (18.16)

X

Here n=;3,%, k= |/ 2—'“"15,::=r+r’+|r—r’|,y=r+r’—|r—‘r'|; v,

are known Whittaker's functions.
For » = 0 the expression for Green's function takes the simpler form

1and M,
i —" in;

6w, 0) = 22T (1 —in) W, (= 2ikr). (18.17)
'e

This expression was first derived in /135/.

Note, however, that the Green's function of the Coulomb potential takes
on its simplest form in the momentum representation if the invariance of
the Sch. Eq. under four-dimensional rotations (for E<C0) /46/ or Lorentz
transformations (for E > 0) /47/ is taken into consideration. In this case,
it is convenient to introduce the function

G (5 ) = — o (O£ 2 G (p, p') (" £ B (18.18)

The upper (lower) sign in this formula corresponds to E <0 (£ > 0} and the
unit four-dimensional vector § has the form

2k B p
b= ole g,=ﬁ_;,_, (18.19)
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Schwinger [46/ showed that for £<{0, G (£, &) can be written in the form

ow n—1 Y m E)y.m ’
CRE)=3 2 % (18.20)
n=1 =0 m=—1 +—n_

where Yum (§) are the four-dimensional spherical functions. Carrying out
the summation over / and m, we get

GEE)=8E—Y) — mmg—pr + o sy 1O €% M — @ ),
© (18.21)
Oz, n)= 2 el (8:&") = cosy.

n=0
The expression for G (¢, ¢’) for E > 0 was derived in /47/:
G (&, ¥) = {dog, () 5 Younl®) Yom (), (18.22)

= 2n np p%/4
gff)(P) —(I—TCth——z—)m,
2 3/4
£ 0 =P e = — 5 il I (18.23)
2

g (o) = — py___#A

:t (p)__ (1+ —cth =~ ) Py
Here the functions Y,m are analogous to the spherical functions for a two-
sheet hyperboloid & — E* = 1 and the subscripts i, mark the position of the
tips of the vectors & and E’ on the hyperboloid sheets: i = 1(2) if & lies on
the upper (lower) sheet; the subscript j similarly signifies the position of ¢',

§ 19, SOME PROPERTIES OF GREEN'S FUNCTION

As we have shown in the previous section, the Green's function of the
three-dimensional Sch., Eq. is expressed in terms of the Green's function
of the radial equation. We will therefore concentrate on the latter only.

Consider the function

, 1
Gl r)=—V 7 518 )% (r)-

We see that Gif} is an analytic function of %, in the entire upper halfplane,
except at the isolated points k& = k, on the imaginary axis (bound states),
where it has poles. Near the poles, for large r and r’ it behaves as

(+) D(r, r')—>— _1_(—1) &0 (&) kgl (ear) i VAnlt € & Enltrry

kskp ko U 2y k'—k
This expression suggests that for any r and r’ we should take

o 1 At Xt ) Xt () A ()
o) — = , 19.1
i :) %, E—ky rpry (19.1)
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where yu is the normalized wave function of the n-th bound state. This
expression is indeed always applicable. Except for the poles at the points
k = kn;, the Green's function has no other singularities in the upper k half-
plane. For |k |— oo and r > r' it falls off exponentially. This is immedi-
ately obvious from the asymptotic expression

G;&) (Irkvl_r’;l_)—%zlt (elk {r+r’) (_ l)lsl (k)_elk(r-r ))'
where we should put k& = &k + ik, (i > 0); this expression also shows that in the
lower % halfplane the function G is exponentially divergent for | k| — c and
its poles coincide with the poles of S; (¢). In the following we will show that
the poles of S; (k) in the lower halfplane correspond to the so-called quasi-
stationary states.

Thus, the poles of Gif in the upper halfplane correspond to stationary
states, and those in the lower halfplane to quasistationary states.

Some important theorems can be proved using the integral represen-
tation of Green's function

Gy At () Ay () e 1(’ ) 19.2
G, r) = Zk,_k:_*_h +§dk e (19.2)

Integration of (19.2) over k* yields

S drGE) (r, r') = — i {3} k(1) Xia (') +

—o0

+S AR Y (1) A3y (r’)}= —nid (r—r’). (19.3)

If we introduce a cutoff factor C (k’)—> 0, which is free from any singula-

k-+00

rities in the upper #* halfplane, e.g., C; (£*) = ¢/** with positive a— 0, we
find completing the integration contour in the upper halfplane

{680, e ars =0, (19.4)

If the cutoff factor has no singularities in the lower halfplane, e.g.,
Cs (k%) = e—o**, a >0,

completing the contour in the lower halfplane we get

°§d G (r, r') Ca(k?) = — 2nid (r — 1)), (19.5)

00

Representation (19.2) leads to still another interesting formula,

o
1) , n_ xk,z(’)
Sdf Gt (ry ) Yt (r')= Py (19.6)

o

whose proof only assumes that %u are orthonormal functions,
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Ch.4, GREEN'S FUNCTION AND PERTURBATION THEORY

We can similarly derive all the fundamental properties of the function Gi7.
We will not go into this problem, however, as G is hardly ever encountered
in the applications.

The analytical properties of the Green's function of the three-dimensional
Sch., Eq. constitute a trivial generalization of the corresponding properties
of the radial Green's function. In particular, (19,3) and(19.6)are replacedby

<

S dEGE (r, r') = F nid (r — 1), (19.3")
—oo
. , , 2m 952 (0
SerE*’(r,r)wﬁi)(f)=-T’:p:Tp,- (19.8")

§ 20, GREEN'S FUNCTION FOR SEVERAL
NONINTERACTING PARTICLES

Using the standard method, we can find Green's functions for the case
of several noninteracting particles. For two particles, the Sch, Eq. has
the form

(Hy+ Hi— EY g = {(— g A+ Us(r)) +

+(— %ArFUz(fz))—E}ﬂ)E(rh rs) =0, (20.1)

where r, and r, are the particle coordinates, m; and m, are the particle
masses, U, and U, are the potentials that the particles see, and H, and H,
are the corresponding Hamiltonians, As a complete set of functions of
this equation we can take all the various products of the form s, (7)) ¥s, (Fs)
where ., $s, are the eigenfunctions of the Hamiltonians H, and H,. Then
forming an expression analogous to (18,5) and integrating, we easily find
for Green's function

G (ri i 1, 1) = F gt S de G{*' (11, r1) GEA (s, 1), (20.2)

—c0

where G, (r,, r'y) and Gg_, (r,, r'y)are Green's functions of the operators (H,—e)
and (H; — (E —¢)), respectively. To check this expression, we act on the
right-hand side with the operator (#, + Hy —E). Using the relations of

the preceding section, we get

oo

For S de[(H1—e)+(Hs—(E—e))IG(r,, r1) GEX (P2, r2) =

=For S de {8 (r1— r1) G (Ps, P3)+
+8(ra— )G (ry, )} =XP1 — 1) 8(ra— 1), (20.3)

i.e., the right-hand side of (20.2) is indeed Green's function of equation (20.1),
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§20. GREEN'S FUNCTION FOR SEVERAL PARTICLES

We can similarly treat the case of three and more particles. In the
general case of N noninteracting particles, the Sch., Eq. has the form

N
QH:—E) (ryy - . o rn) =0, (20.4)

i=1

and for Green's function we readily find

i T N O
1 1 ¢
( ‘ ’
=4 (“i),v_lidel. . dey G2 (P1, 7)) G2y £i) « - +
FG P ) O s (0 1), (20.5)

1=11
Here the + and - signs correspond to the two cases when all the particles
emerge from the center (+) or they all converge to the center (-).

A significant aspect in the application of (20.2) and (20,5) is the choice
of the path around the poles of Green's function corresponding to bound
states. The prescriptionhere is very simple. Since in the derivation of
these relations we use the integral properties of Green's function (19.3'),
the path around the poles in (20,2) —(20,5) should be precisely the same
as that in (19,3'). In other words, the integration over e should be carried
out along the real axis and the position of the poles of Green's functions
entering the integrand is automatically fixed by the sign of the infinitesimal
constant 7 in (18.5). In practice this means that when integrating G¥’ w
should replace E by E, 4+ i§ (6 > 0) and carry out the integration over E,, and
when integrating G’ we should replace E by E, — i8.

To complete our brief survey of the properties of Green's functions,
let us consider their behavior for close values of the arguments. We have
seen in the preceding that the one-~-dimensional (radial) Green's function
Gy (r, r') remains bounded for r = r’, whereas its derivative with respect
to r or r' is discontinuous at this point. Green's function Gg (r, r’) of the
three-dimensional Sch. Eq. for r = r’ goes to infinity at r = 7' as 2,'; 4; Ir:
This is obvious from the following considerations: each term in (18.10)
remains finite for r = ¢, Therefore, any singularity of the function may
be associated only with the weak convergence of the series (18.10) for
large I[. On the other hand, as we will see in the next section, the wave
functions X« in a potential U (r) approach the free-particle functions for
large {:

m(r)~]fzsin<kr —"T’)

Therefore the radial Green's function also approaches the Green's function
G (r, r') of the Sch, Eq. with zero potential:

Gy (r ’,) 1 :t(lu> ’)Sm (kr< n—l)E G (r, ). (20.6)

Thus, G (r, r’) has the same singularity as in the case of a Sch, Eq. without
a potential, when the Green's function can be found in explicit form:

(t) 2m 1 et (r-r’) om 1 eLintr—r)
(r, ')"“F(zu)'g Pe—prm = W r—rT"
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Ch.4. GREEN'S FUNCTION AND PERTURBATION THEORY

This proves our assertion concerning the divergence of the three-dimen-
sional Green's function for r — r’. Hence it follows immediately that in all
the physically relevant cases the difference

G (r, £')— GiEXr, 1)

is free from singularities at # — r’ (except, of course, the singularities
associated with bound states, when Green's function goes to infinity as a
function of & for all r and r’).

Similarly we can consider the many-particle Green's function (20.5).
Its divergence for r;— r; is also associated with large orbital momenta.
However, the character of this divergence is different. For example, the
two-particle Green's function (20.2) for equal arguments behaves as

i
[r— rt - (n— it

§ 21, PERTURBATION THEORY: COORDINATE
REPRESENTATION

The perturbation theory is probably the most popular and widely known
topic of quantum mechanics. * The literature on the subject is very
extensive, and we will therefore be as brief as possible. The problem is
formulated as follows: let all the eigenfunctions ¢’ and the eigenvalues

of the Schroedinger equation
Hyd = EgY (21.1)

be known. Find the corrections to the eigenfunctions and the eigenvalues
which arise when the Hamiltonian H, is incremented by a small perturbation
W. First we consider the scattering problem. The most general technique
is to take the solution of the perturbed equation

Hoy+ W—E)pu(r)=0 (21.2)
in the form
o= + ou, (21.3)

where the increment ¢: is assumed to be small. For ¢ we have the equation
(Ho— E)ou = — W (4 + 9u). (21.4)

Introducing Green's function Gg(r, ') of the unperturbed operator (H, — E),
we write (21.4) as an integral equation

() = = drGe (e, P W (0 (F) + 0a (). (21.5)

® There are several versions of the perturbation theory. The most commonly used is the Rayleigh—
Schroedinger perturbation theory /136/; see also /137/. In this case both the wave function and the
energy eigenvalue are series expanded in powers of a small parameter. Of the other variants we mention
only the perturbation theory of Brillouin /138/ and Wigner /139/ (see also /140/), when only the wave
function is series expanded.
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Successive iterations of this equation give ¢s to any desired accuracy.
To terms of second order in W, we have, say,

¢.=-—Sdﬂosv.f)wwﬁwf)+
+S dr'dr'Ge (r, Py WGE (¢, r") WY (7). (21.8)

Any problem is thus reduced to the determination of Green's function
Gg and the actual computation of the series (21,6)., For an arbitrary
Hamiltonian A,, the Green's function has the form

, B (VB (r) o dpp®@ (r) 90" ()
G(EH(r, r) = Z-—TE_—E:—'- S__"___’____'

nim E —Ep+ it
and to find it we need all the eigenfunctions and eigenvalues of the unper-
turbed level, This considerably complicates the computation of the series
(21.6).

The position is essentially simplified, however, if we first consider
potential scattering, i.e., an unperturbed Hamiltonian of the form

Ho= —p= A+ U ().

We know from the previous sections that to find Gg we require only the
solutions of the Sch, Eq. for the same energy value E (see (17.11) and
(18.9)). The perturbation theoretical expressions are thus markedly
simplified. To first order in the perturbation we have, assuming a
spherically symmetric W,

o) =2 LR dM YR+ DY, ({;) S dr'GS) (r, 'Y Wka (r'). (21.7)
i

Here for Gg(r, ') we used expression (18.10) and for ¢}” the expression

o 1
W = e,

In all the above formulas we have to use the Green's function G
corresponding to outgoing waves. This is readily seen from the following
considerations. Incoming waves in the unperturbed function v are
determined by external conditions, namely by the current reaching the
force center from infinity, This current is assumed to be known and
independent of the interaction mechanism. Adding the perturbation W
to the potential will thus only affect the outgoing waves. This in its turn
means that we should use the function G* and not others.

The asymptotic behavior of ¢ for large r can be found from (18.13).
This gives (to first order in the perturbation)

kr
Dalr) ~ — T\ are ey wed ), (21.8)

where we introduced the unit vector n = 7' Note that the final-state wave

function in the matrix element is ¥, This is so, as we have mentioned
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Ch,4. GREEN'S FUNCTION AND PERTURBATION THEORY

in the preceding, because these functions describe the wave of particles
which are scattered in a definite direction (along the vector &n).

Using the expressions of this section, we can readily find the correction
to the scattering amplitude due to the perturbation. * To first order in W,
the scattering amplitude is

(00,
FO) = o V@D YioA) M2 ), (21.9)
i
Here & is the unperturbed scattering phase, and
A= — 2 %Sdr'x,z (') Wha (r'), (21.10)

where % (r) are the radial functions of the unperturbed equation normalized
to 8 (B —F').

A necessary condition for the applicability of perturbation theory is
lpe| << 19,

If the perturbation W is localized within some volume V, the above
relations apply

1) if w—0,

2) for any W, provided that [—> oo or k—>oo.

The first condition is obvious, The second is associated with the
smallness of the perturbation theoretical integrals in the two following cases:

(a) for k- oo because the unperturbed wave functions widely oscillate;

(b) for [ — oo because the functions %y are very small if the particle

energy E is less than the centrifugal energy, i.e., when r<7:- .

We have thus laid the foundation for the treatment of the divergence of
Green's functions for close values of the arguments given in the last section.
The corresponding estimates are a trivial consequence of the above relations.

For discrete-spectrum functions the perturbation theoretical problem
becomes more complicated, since besides wave function corrections, we
should also find the corrections AE, for bound-state energies. The standard
procedure of the perturbation theory in this case is well known, and we
will not discuss it any further. We only note that finding the wave function
corrections requires knowledge of all the eigenfunctions of the unperturbed
equation. In case of a potential interaction, however, we can propose a
method (as for the scattering problem), which uses the solutions of the
unperturbed equation for one energy value only /147/.

The equation for the radial wave function now has the form

X;‘Jr(k:,_’(_i,i;ﬂ_v_w)xn,:o, (21.11)

*  An obvious shortcoming of the ordinary perturbation theory is that the scattering amplitude does not
satisfy the unitarity condition, This led to the development of the so-called NID method /141, 142/,
which is free from this shortcoming. Comparison of numerical solutions obtained by this method with
exact solutions is given in /143, 144/. Recently Dashen and Frautschi /145, 146/ developed a character-
istic perturbation-theoretical method within the framework of the S-matrix formalism,
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where w= zhL;‘W, and ky are related in the usual way to the new energy value

of the bound state. The solution is sought in the form

= Co () %7 (1) + Cs (1) 9l (1), (21.12)

where C, and C; are as yet unknown, and ¢% and % are respectively the

irregular and the regular solutions of the unperturbed equation computed
for the energy E, = %(kf&)}’ of the unperturbed bound state. The functions

C, and C, are assumed to satisfy the condition

CLX) + Caoll = 0. (21.13)

In the theory of differential equation, this is known as the Lagrange
condition. Inserting (21,12) in (21,11) and using (21.13) we obtain for C]
and C, the exact equations

Ci=—20(Cu () + Co (),
' . (21.14)
C,= X—D—v Cux (r) + Cag(r)),

where to simplify the notation we dropped all the indices of %@ and ¢Q
and wrote

v(r) = kn— (k) — w, } (21.15)
D=oy —ox

Equations (21.14) can be solved by perturbation theoretical methods.
In the first approximation, we take in the right-hand side of these equations
C; = 1and C,= 0. Moreover, we should remember that the wave function
must everywhere be bounded, so that we should have

G (0) =Cy(0) =0, (21.186)

(0)
since ¢ diverges at the origin as r™ and at infinity as ¢*!7 All this
combined gives

G =1—5 v @ 10) 90) do,

8 (21.17)
C,(r)=%-sv(p)x’(p)dp-

The first condition in (21,16) is clearly satisfied. From the second
condition we find k% in this approximation:

A® @h) = (k5 — (k8 = \w ) 22 () dp. (21.18)

o

-]
The normalization { y}p)dp = 1.
o
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Expressions (21,12) and (21.17) give a closed expression for the perturbed
wave function of a bound state to first order inw. Expression (21.18),
defining the bound-state energy correction, adds nothing to the usual
expression of the first approximation of the perturbation theory. The
advantages of this method become apparent only in calculating the energy
corrections in higher approximations. As an example, let us derive the
energy correction in the second approximation, Inserting (21.17) in the
right-hand side of (21.14), we can find C, (r) by elementary means. The
condition G, (%) = 0 directly gives for the energy shift

A% (h) = A% (Bh) + 55 § do do 14%) (£R) —w (p)] 1A% (k2) — w (0)] X
o0
X %(p) % (@) [x (0) 9 () + @ (p) % (O)1- (21.19)

This expression, like all the others obtained by this method, does not
include the complete set of functions of the unperturbed equation, but only
the two functions ¢ and %x. The introduction of the irregular solution is
thus equivalent to the introduction of a complete set of everywhere regular
functions Ya, %!

As the Wronskian D is independent of r, we can express ¢ in terms of ¥x:

r

‘P(r)=—x(r)DS xf(‘:,). (21.20)

a

This means that the entire perturbation theory can actually be developed
using only the regular unperturbed solution Xa:.

§ 22, PERTURBATION THEORY: MOMENTUM
REPRESENTATION

Let us consider the equations of the perturbation theory in the momentum
representation. The momentum formulation of the perturbation theory is
actually used in field theory, and certain difficulties and singularities
encountered in this advanced treatment can be understood within the frame-
work of nonrelativistic quantum mechanics.

We start with the ordinary Sch. Egq.

(- g;"—A+U—E)\Pn(r)=O.

The wave function ¢ (r) is replaced by its Fourier transform (or in
other words, we change over to the momentum representation):

¥ (1) = 5 0 (0) 44, (2.1

(@) = — e () dr.

1
(2n)"s

The equation for @, (q) (the Schroedinger equation in momentum representa-
tion) takes the form

@ — B o (@) = — (Vogwu (@) g, (22.2)
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where

1 .
Ver = gy Sr’ @07V (r) dp. (22.3)

The equation of free motion (V (r) = 0) with a source in the right-hand side

(— ;@ = Q) (22.4)
has a particular solution
0 (@) =5 T +0, (22.5)

whence we conclude that the function

g2 (q) =qT_%;7, (22.6)

is Green's function of the Schroedinger equation in the momentum represen-
tation. Just as in the coordinate representation, the signs * correspond to
two independent Green's functions meeting different conditions at infinity
(an incoming and outgoing wave).

In (22.5) changing over to the coordinate representation we get

1

P (r) =(2ﬂ)a/,

. 1
Sexqrq,. (q)dq = e Selqr = _Q’;q; = dq. (22.7)

The vector r is chosen as the polar axis, and Q(g) is written in explicit
form as a function of the Cartesian coordinates:

QW@ = Q(9x qu: ¢2)-

Taking § = %—, we obtain

o 1 [
¥a(r) =(3;‘)T$ dvidi § ?’——(E:t_m‘""x

X Q@ V1—Ecosq, Y T—E'sing, qt)dg.

Parts integration over § gives

1 1
1 1
S Q= - #'Q (0, 0, q) — £ Q (0,0, — )} W_S etqrz%% dt.

=1 Y

The last integral {as further integration by parts will show) is of the order

of -:T and can be dropped from the asymptotic expression. Thus (we write

Q(g) for Q(0,0,¢q)

-t 2T g4 v — 0 (—q)] =
W) ~ S o Q@ — Q) =

1 1 ) d
=Zr (2m)h ‘Sm & _:’k:qi m [e47Q (@) —e*"Q (—g)l. (22.8)
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For simplicity let Q (g) as a function of the complex variable ¢ have no
singularities in the upper halfplane. * In this case integration of the first
term in brackets can be carried out using a contour which is completed
in the upper halfplane and of the second term using a contour completed
in the lower halfplane. The integrand has poles atthe points ¢ = = (¢ - iy)
and we find

W~ Zaw, =000 =0q(tL), (22.9)

if we use gi’(q).
g% thus corresponds to outgoing waves.
It can also be readily shown that the Green's function

1
g (g) = =T (22.10)

generates an incoming wave:
)y A Q(q) ARV r
vt = (2n)" Seiq' ¢ —r iy dq~= VTZ‘Q (_kT)' (22.11)

We can now readily write the perturbation theoretical expression for
equation (22.2). Note that the solution of the free equation clearly has
the form ¢s () =8 (¢ — g). In the coordinate representation this solution
gives a plane wave

1

(2")’/‘ eikr,

Considering the right-hand side of (22.2) as an inhomogeneity, we can
write the general solution of this equation as a sum of the solution of
the homogeneous and inhomogeneous equations:

9, (0) =8 (6 — ) — &0 @ \da'V 9, @)- (22.12)

We thus obtain an integral equation for the wave function. Iterating
we obtain the perturbation theoretical series

%@ =8k~ @Vt (e @V, .8 @)V da. (22.13)

This series is very often encountered in field theory and in related
branches of physics.

* These singularities at points ¢ = q + igs (92> 0) would have given rise to terms of the form ‘4™,
which make no contribution to the asymptotic behavior of ¥,.
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§ 23. CONVERGENCE OF THE PERTURBATION
THEORETICAL SERIES

The applicability of the perturbation theory constitutes a fairly delicate
problem, * of which only one aspect is considered here. In calculations one
generally makes use of the following test: if the first approximation of the
perturbation theory is much less than the zeroth approximation, and the
second is much less than the first, this is taken as a sign that the pertur-
bation theoretical series converges and only the first terms need be
retained. In general, however, this is not so. We will demonstrate
this fallacy for the case of the Sch. Eq. in the momentum representation.
(Compare with the solution of this problem in the coordinate representation
/154, 155/.)

We will obtain an exact solution of the problem and then try to solve it
using the perturbation theoretical series. Consider the particular case
of a singular potential (see § 3)

Viry=—V, for r<aandV(r) =0 for r>0

with V) — oo and a— 0, so that V,®— const. At the first stage, however, we
take V, and a to be constant. The matrix element Vg of this potential
entering equation (22.2) is
V 1 . ’ ! ’
Var = — g g =g in@la—q' ) —alg—q'|cos@a]g—q' |} (23.1)

For |q—¢q'|a<<€ 1, series expansion gives

Vog = — 22, (23.2)

N
for |g¢ —¢'|a> 1 the matrix element falls off rapidly while oscillating:

V ’ V
V"-~-§u—,|qf—q,l,—cosa|q——q|<€,—. (23-3)

The principal contribution is clearly from the region 9—q1< % We

will therefore first consider a potential with sharp cutoff:

Vq¢={_c for |g| and lq,|<b. (23.4)
0 for|q| or |q'|>b,

where C— 0, b— oo for a— 0,

® For example, the application of the perturbation theory to the hydrogen atom (the entire Coulomb
potential is treated as a perturbation) gives in the second approximation a finite, but incorrect energy
/148, 149/. In the presence of bound states the perturbation theoretical series may diverge starting at
a certain energy. This difficulty is sometimes avoided by using alternative methods, e.g., Fredholm's
method /150—152/ or the method of quasiparticles /153/. In the case of a highly singular repulsion
potential, the perturbation theoretical series diverges, whereas the physical result is bounded. A
development of this kind possibly arises in the so-called nonrenormalizable quantum field theories
(see, e.g., /237)).

97



Ch.4. GREEN'S FUNCTION AND PERTURBATION THEORY

Equation (22.2) is written in the following form:

b

@ —#) o (@) = 4C {g"au (g dg'. (23.5)

[

If we are interested in the bound state of the particle (i.e., k= — k]| = —»*),
we choose a solution in the form

A
q»-(q)={v'—k” for ¢<b. (23.6)
0 for ¢ >b

and insert it in the equation to obtain after elementary integration

b

0= 1-4:;0845‘1'1”" —1— 4nC[b—'n tan-l%]m 1— 4:;0[1;—;”]. (23.7)

%3
0

Hence we find the binding energy (or more precisely, the corresponding
wave vector)
“__luth-—i (23.8)

T 2vC

We have so far regarded a,V,,C, and b as finite, In the limit as a— 0,
V, — oo we have from the preceding C— 0, b — cc. If we wish to preserve
constant bound-state energy on passing to a singular potential, b should
go to infinity for a— 0 as

14 20%Cx (23.9)
4nC ¢

Using (23.6) we readily find the wave function in the coordinate repre-
sentation:

11)(’)=(.2’:TSeiqfq).(q)dq=A%l/ne__:_r’ (23.6')

and from the normalization condition we find the constant A4, i.e,, A= V2.
The wave function (23.6') diverges at the origin, as is proper for a
singular potential.
Now consider the problem of scattering, The wave function is sought
in the form

B
(@) =3,k —a) + s (23.10)

where v is an infinitesimal positive number. We will see in what follows
that this form indeed corresponds to the scattering problem: on passing to
the coordinate representation, the first term gives a plane wave and the
second term gives a scattered outgoing wave. Inserting (23.10) in the
starting equation and using (23.4) and the identity

N SR SRR . of i SN
P g +q'(q’—k’—i7)' (23.11)
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we reduce the equation to the form

0=B— C{l+4nBS%)}-B-—C{l+4uB(b+£2k—)}.

Using (23.8), we rewrite this as

B=i 1

2 h—ix *

which solves our problem of finding the wave function,
Reverting to the coordinate representation, we get

Pa(r) = (21;) - { .’+k—- elkr}- (23.12)

ix r

The scattering cross section is

o= An (23.13)

3 nl_*_kl‘

Let us try to solve the same problem with a singular potential using
the perturbation theory. At a first glance, this would appear to be very
simple, as the matrix elements of the interaction Ve go to zero for ¢—0.
The perturbation theoretical procedure calls for iteration of the starting
equation (23.5). The unperturbed wave function (i.e., the solution of this
equation without the right-hand side) is simply a plane wave:

() =8 (k—q)

The first-approximation correction is (see previous section)

(g =

{?—_F— for q<b,
0 for ¢>b.

Inserting this expression in the right-hand side of (23.5), we find
0 @)= £ 4nC(b+ %)

Reiterating, we find

C

oM (g) = [4,.,(; (b 4.k )]"" (23.14)

Finally, to obtain the exact wave function we should sum the entire infinite
perturbation theoretical series, which in our case is easily accomplished,
as the series reduces to a simple geometrical progression:

P (@) =0—q) + 2} % g) =
’ —_—
4nc o+ %)

i 1
=8k —D+ mp—m F—E—r (23.15)

[
=d(k—q) + =Pt
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Ch.4. GREEN'S FUNCTION AND PERTURBATION THEORY

and the result coincides with the previous exact expression.

We have seen in the preceding that each approximation of the perturbation
theory vanishes in the limit as ¢ — 0, i.e., when the range of the potential
goes to zero. However, the final result, which is a sum of an infinite
series, is nevertheless different from zero, as it depends not on the range
of the potential but only on the energy of the bound state. This is a clear
proof of the fact that smallness of the first and higher terms of the pertur-
bation theoretical series does not guarantee sufficiently fast convergence
of the entire series. The reason is fairly simple: the applicability test
of the perturbation theory is that the wave function increment A¢ (g) be much
less than the zeroth approximation function for all values of the argument.

For the case under discussion, the zeroth approximation function o (q)
is zero for k< ¢. The corrections ¢§’ (¢), on the other hand, do not vanish
virtually for all q, although in absolute value they go to zero. As the result,
any finite number of approximations does not give a correct answer for the
wave function.

We have assumed, as is the common practice, that for a sufficiently
small perturbation AW and A — 0, the wave function ¥ and the perturbed
energy E can be expanded in powers of A or, in other words, these functions
are assumed to be analytic in A.

This is however not always so. We will now give an example when the
energy E is not an analytic function of A, Let @, ...,¢y and E; =0, ..., Ey
be the eigenfunctions and the eigenvalues of the unperturbed Hamiltonian

Ho@o = Eq@o, HoQn = Engn, n=1,.., N,

where E, are uniformly distributed over the interval (— A, A). Further let
the interaction Hamiltonian have nonzero matrix elements only between
the states 0 and n, all elements having the same sign. Finally, to simplify
the mathematics, let all the matrix elements be equal, Vo =V,

The solution of the Sch. Eq.

(E—H)v=Vy
is sought in the form
N
b= A0+ cnpa). (23.16)
n=1

It is assumed that ¢, <€ 1. For these coefficients we readily obtain the
equations

N
E=VJlcs (E—Epen=V. (23.17)

n=}%

Solving the second equation for ¢, and inserting the result in the first
equation, we obtain

E=f(E)=V=§]E_‘£". (23.18)

n=1
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This is an exact equation for the energy £. We see from Figure 13 that the
equation has (N — 1) roots over the interval [—A, A], one root for £ > A and
one root for E < —A,

FIGURE 13,

Let us find the ground state energy in the limit as N — oo {the root of the
equation for E < —A). In this case, the sum can be replaced by an integral,
so that

NV2

_ WIHE—A (23.19)

E ——
AT EF A’

We obtained a transcendental equation for E. Note that for the effective
coupling to remain weak (it is this case that we consider) it is necessary
that for N—oo, V—0 so that the prelogarithmic coefficient goes to a small

number, i.e., Az,x: ~a< 1, Inthis case E =~ —A and we get

_1 NV3
E+A=—2Ae =, a=N1imTA-,—<1. (23.20)

We obtained an expression for the ground state energy, which is a non-
analytic function of the perturbation force V and therefore cannot be
recovered from perturbation theory. Note that in our case the distance

between levels in the interval [—A, Al is of the order of -2—,6— and therefore
approaches zero for N — oo, when the distance between the lowermost

i
level and the next higher level is finite, being equal to A, = E 4+ A = —2A¢ .
We obtained a so-called energy slit, plus a continuum in the interval
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Ch.4., GREEN'S FUNCTION AND PERTURBATION THEORY

[—A, Al. Note that the probability A% of finding the state ¢, in the ground
state ¢, is finite in our case;

ﬂlr-

i (23.21)

A=

aln

The above model probably appears to be highly artificial, without any
relation to actual practical problems.

In this respect we should emphasize that it may be treated as a model
(though very rough) of the superconducting state. Here the function ¢,
corresponds to the states ¢ of a pair of electrons with oppositely directed
momenta & and -k and spins (Cooper pairs /156/), and 2A can be inter-
preted as the thickness of the Fermi surface (this is the region where the
superconducting interaction takes place). The interaction between different
states in this model is associated with transitions to an intermediate state
¢, and is called effective attraction. This model qualitatively reproduces
the characteristic features of the superconducting state: the formation of
the slit for arbitrarily weak attraction and the nonanalytical dependence
of slit width on the interaction force /157, 158/,

§ 24. DIAGRAM TECHNIQUE

The widespread use of the perturbation theoretical series in modern
theoretical physics suggested the development of standardized computation
procedures which had to be made as graphically meaningful as possible.
This was accomplished with the advent of the diagram technique, invented
by Feynman at the end of the 1940's /159/, This technique originally
evolved from problems of quantum electrodynamics, but now it is almost
in universal use,

The diagram technique is conveniently applicable to nonrelativistic
quantum mechanics. We will now describe how this technique is developed.

Consider the Sch. Eq. with a perturbation W (r):

(Ho—E)p = (— zmA+ U —E) 9= — Wy. (24.1)

Complete systems of wave functions of the unperturbed operator (H,— E)
will be denoted by ¥ (r)and Green's function by Gi(r, #'). The solution is
sought in the form

¥ (r) = VF (O)+ ea(r).

where the increment ¢4, (r) is regarded as small. For g, (r) we obtain the
equation

(Ho—E) @a, = — W (r) (¥4’ + o). (24.1")
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§24. DIAGRAM TECHNIQUE

Iteration of this equation yields

9, (1) = D} o (r),
o (r) = (— 1)"Sdr, .-
e draGE (7, PR) W (ra) G (P, 1a) W (£ocy) . ..
. W (r2) GE (ra, r) W (ro) o8 (r). (24.2)

We are generally concerned only with the asymptotic behavior for r— oo.
In this case, using expression (18.3), we find

2
o ()~ 1 5 {ar
c..dr, (;)'(fn)W (fn) Gg)(rm fna)...
W) GF (ra, ) W () ¥ () = S £, ko),

()= #f(k' ko); [k, ko) = % £ (R, &), (24.3)

N}

where k = k—:—-.

We see from these expressions that the amplitudes f» have anattractively
simple structure: first comes in the rightmost position the unperturbed
function ¢{P, which describes the primary particle wave propagating in the
direction k. Then come alternating the functions W and G+ and finally,
in the leftmost position we have the function (${7)* which describes the
scattered wave propagating in the direction &. Each amplitude f"}(k,&,)
can be put in correspondence with a simple graph or diagram,

As an example, we will draw the diagrams corresponding to first few
amplitudes (Figure 14), A one-to-one correspondence between diagrams
and amplitudes is established as follows: the line from infinity to the point
r, is made to correspond to the initial function ¢§’(r;), a cross at a point
r¢ corresponds to the function (—W (ry)), a line joining two adjacent points
riand r. to the function G§(r, r.y,), and a line going to infinity from the
last vertex to the wave function of the final state w},"‘ (rs). To calculate
the amplitude f®, we should assemble the product following the above
prescription and then integrate over the coordinates of all the vertices,

The integral is then multiplied by 21'-:; (see (24.3)). The amplitude f™ is

represented by a graph with n vertices, ‘

f’ (4 /fll f(l)
Wiry Wery)
LAV G A S 7 W
Wer) Wir,) Wim) *Wery
FIGURE 14,

Each diagram has a simple physical meaning. The line drawn from
infinity corresponds to a particle moving from infinity (in the initial
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direction &) in the unperturbed potential U. This particle is scattered
at the point r; by the perturbation W, resumes its motion in the field U,
reaches the point r,, where it is again scattered by the perturbation W,
eventually reaching the point r;, and so on. The particle scattered for
the last time by W at the point 7, escapes to infinity (moving in the direction
of the vector k). Between two successive scattering events the motion of
the particle is described by Green's function G*(r,, r;1,). This function is
therefore often called the propagation function or propagator.

In this simple case the graphs clearly contribute toward better intuitive
understanding of the problem, but hardly simplify the mathematics:
the structure of the original perturbation theoretical series is as simple
as they come.

In more complicated problems, however, the graphs are quite helpful
in mathematical manipulations., Consider, for example, the case of
several perturbations

W=w+w,

If (—W;) corresponds to a cross and (—W,) to a circle, then following the
above prescription we have two amplitudes in the first approximation
(Figure 15) and four amplitudes in the second approximation (Figure 16},
As the order of the perturbation theoretical approximation increases, the
number of terms making up the amplitude grows catastrophically. The
use of graphs greatly simplifies the problem of drawing up the complete
perturbation theoretical series and safeguards against omission of
individual terms,

fﬂ) f”)
FIGURE 15,
f(z) f &) /!/ f{d”)

FIGURE 16.

In field theory we generally work in the momentum representations and
all the interactions are incorporated inthe perturbation W, Expression(24.3)
can be rewritten in an alternative form remembering that in this case

(+) 793

13

= i) =
Vs (2,‘)'/:

v (n) (w‘*’) ()

G - _
o) - —fap
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§25. TIME-DEPENDENT GREEN'S FUNCTION
Inserting these functions in (24.3), we obtain after elementary manipulations

(n) _2m 1
f (k, ko) =7 qul .. 'dq"qun E_EW X

1
9ndn-1 E —_E_ iy °
nin-1 E Eqn_l-f-nf

(24.3")

xV LV Ve,

1

Here the propagators are E_:‘Ei—+i?' and the vertices of the graphs corre-
%

spond to the Fourier components of the potential,

§ 25, TIME-DEPENDENT GREEN'S FUNCTION
Consider the inhomogeneous time-dependent Sch, Eq.
(ingr—H)olr. )= Q(r.1). (25.1)
A particular solution of this equation can be written in the form
@lrt)= Sdr’ G (r 70 Q (7, 1), (25.2)

The time-dependent Green's function here is

L% _IE (t—1)
G=—2—M~SdEGE(r,r’)e LI (25.3)

Indeed, seeing that
HGg =EGe + 6(r—r),

we readily find

s a T, 1 2 _‘IE__‘E:& :
(th—&-—-H)G(r,t;r,t)=deEb(r—r)e To=dr—r)8(t—t). (25.4)

Expression (25.3) is not single-valued, as we may use either Gf’ or G{.
We will see presently that the first alternative (i.e., G§') is of the
greatest practical importance. It describes the natural evolution of
events from past to future. We will therefore consider this case only.
Using the explicit expression for G® we write

Lk (r—t')S ¥ (1) 95 ()

G(r,t; r', 1) E—_-?—z’fi’r)
m

= SdEe‘

Integrating over E and remembering that ¥ > 0, we obtain

i +) @ % n_’-:_ = g
Glr 1ty = | H4PH OW" () e for £>£+ (25.5)
0 for t<#,
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i.e., the function does not vanish only for ¢ > #.

The simplest Green's function is clearly that corresponding to the free
Sch. Eq. Using (18.15) and (25.3) —(25.5), it can be written in any of the
alternative forms

m(r—r')
(+) ety b m )'/' A=) —
6 (r b r's t) = — 5 (gari=n) ¢ =
iklr—r|— 1—:— —t’)

= 1 dESe——— (25.86)

(o]
b S F—7]
—0

The solution of the free equation with a source Q (r, ) is given by

lkjr—r|—t

Qro ) = — g \dEdr drQ (7', 1) S (25.7)

4nKs r—rj

E(t—t")
n

The meaning of this expression is crystal-clear: the wave function at a point
r at time ¢ is a superposition of waves converging at that point

k) r—r _'E. -t

elzlr | —ié 7 (t-1%)

which left the point r"at time #. The amplitude of these waves is deter-
mined by the source density Q (#/, #). In the simplest case of a point source
at the origin, which emits the wave at a time # = 0(Q =8 (r) 8 (¢)), we have

(s EL
q>(r,t)=—‘7(2,—u".‘ﬂ)"e‘(‘ w) (25.8)

where

A3

m
k=51 E=5-

-‘l\

Emission of particles with fixed energy e corresponds to exponential
dependence of source density on time:

~let

Qr.H=Qr)e™. (25.9)

Indeed, in this case integration over # and E in (25.7) is immediately
carried out and we obtain

ix|r—¢|— —I;—’

2 t .
‘p(r,t)=_h_';’sd,4_ne_l_r__r_,l_Q(,), (25.10)

2me

where x= - I Q does not vanish only in a small neighborhood around

the point r/, for large r we have the natural result

‘,"__{(_1_

am 1 m SwLrs
olr ) ~— - ——ard" 7" ). (25.11)

This is clearly an outgoing wave of particles of energy 2. Its amplitude
is the Fourier component of the source function.
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Another Green's function whose explicit form is known is that of the

harmonic oscillator (U = "“"2"’)
. IS t; ', 1)
ot N i mo Hy —gt—t—s
G(f,t, "t)_—T(stuﬁ)(tTt')) e ] , (25.12)
where
S(r.t; 7, t) =-2$)— [cos@ (t—t') (P2 + r')—2rr'). (25.13)

Note that S (r, £; r', t') (like the exponent in (25.6)) is the classical action,
i.e.,
¢

S(r, t; r', t) =§ L(v)dr,

where L =T — U is the system Lagrangian, and the integral is taken over
a classical trajectory of the particle. This is not an accidental result:
it is closely related to the quasiclassical nature of motion in a potential
U (r) which is only a linear and quadratic function of position /160/. The
potential U may be an arbitrary function of time in this case, U= U (r, ),
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Chapter 5

QUASISTATIONARY STATES

§ 26. INTRODUCTION. GAMOW'S THEORY

In this chapter we meet with a new kind of effects: decay of radioactive
nuclei or unstable particles and resonance scattering of particles. A great
many events are associated with unstable states. Maximum attention is
currently being devoted to investigation of resonance states of strongly
interacting particles, briefly called resonances, which have been discovered
in multitudes in recent years.

Strictly speaking, perfectly stable states are encountered very seldom,
For example, of all the known "'elementary'' particles the only stable ones
are the proton, the electron, the ¥ quantum, and the neutrino., Most of
the nuclear states are unstable.

Excited states of atoms and nuclei constitute a special type of unstable
states. In nonrelativistic quantum mechanics these states are generally
treated as ordinary bound states. The interaction of the electrons with the
radiation field is thus ignored, although it is responsible for transitions
from upper to lower states with emission of y quanta, In more precise
treatment this interaction must be taken into consideration. It is significant
that the same interaction (electromagnetic) produces two entirely different
effects: it binds the electron to the nucleus and makes it jump from one
state to another. Therefore, strictly speaking, we cannot simply turn
off the interaction responsible for electronic transitions leaving on the
interaction responsible for the existence of bound states. If this is done,
the only stable level is found to be the ground state of the atom (the nucleus),
with a continuum of states immediately adjoining it (the discrete spectrum
is eliminated). The continuum states correspond to the scattering of a
Y quantum by a ground-state nucleus. These delicate questions, however,
are not discussed in what follows.

Instability effects can be described using the complete system of
stationary states. However, this description involves a number of
qualitative singularities. For example, when a particle is scattered by
a potential well which is separated from the exterior region by a potential
barrier, the particle wave function in the interior region (e.g., g (0))
markedly increases for certain E = E,. In these cases the wave function
¥z (r) continued to the complex E plane is generally discovered to have a
pole near E, for E = Esn. The corresponding solution of the Sch. Eq. gives
rise to so-called quasistationary states, or states of complex energy.

The remarkable feature is that for quasistationary states we can define
a norm and develop a perturbation theory analogous to that for stationary
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states, Note, however, that at this time the theory of quasistationary states
is still in a relatively embryonic stage, and manipulation of quasistationary
states therefore requires extreme caution.

Fortunately, many other problems of the theory of quasistationary
states can be elucidated with the aid of exactly solvable models. These
problems include, e.g., the analytical properties of the wave function of
a quasistationary state, the determination of the mean lifetime of an unstable
particle from the scattering of its decay products by one another, the expo-
nential character of decay of unstable particles, creation of unstable
particles, asymptotic behavior of the wave function of a decaying particle
for r— oo and t— oo,

At the end of the chapter we will briefly consider other types of long-
lived states (e.g., those corresponding to a virtual level). * Some aspects
of the theory of unstable particles which can transform into one another
{e.g., the problem of the electric dipole moment of an unstable particle)
are treated in Chapter 8,

The first and the most important application of the concept of quasi-
stationary states was the theory of alpha decay of heavy nuclei developed
in 1928 by G.Gamow /161/ and independently, though somewhat later, by
Gurney and Condon /162/.

This theory is still being used in the calculation of decay probabilities
of radioactive nuclei; the probability of decay with the emission of one
proton or two protons [/163/ is also estimated using this theory. In
historical retrospect, however, the significance of Gamow's theory is in
that it constitutes the first successful application of quantum mechanics
to the atomic nucleus.

We will briefly go over some well known starting facts: in a decay of
a given nucleus, the a particles have a definite energy; thus, for example,
in the decay U2® —Th23*+ a (the isotope Th2}* is designated for historical
reasons as UX,), the energy of the o particle is 4.7MeV. There is obvious
electrostatic repulsion between the a particle and the daughter nucleus
Th3*: the interaction potential is given by

U= by _ 2908 280

==5—="——=""- MeV/fermi,
i.e., the potential is 4.7 MeV at a distance of 55fermi. The range of
nuclear forces is only of the order of the nuclear radius, i.e.,

1.2 A" fermi =1.2 (234)" fermi = 7.4 fermi,

where the electric potential is approximately 35MeV,

All that we know about the potential is summarized in Figure 17. The
vertical axis gives the energy of the Th3}*+ a system; the distance between
the o« particle and the nucleus is laid off the horizontal axis. To the right
of R, we are dealing with pure electrostatic potential; to the left of R the
(negative) nuclear interaction is added. The state of the mother nucleus
U238 corresponds to the energy E, marked by the dashed horizontal line,

E; = 4.7TMeV. The resultant potential left of R should clearly be less than
Ei. Between R and R, there is a region where U E,, i.e., a region where
in classical theory the particle may not occur,

* Some qualitative features of nonstationary states in a periodic field (the so-called states with definite

quasienergy) are discussed in /238 —241, 17/.
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Had the potential remained constant to the right of R (as shown by the
dash-dotted line in Figure 17) instead of falling off to zero, the energy level
E;, would have been an ordinary stationary state. In this approximation we
would have missed the main point, namely the decay; however, since the
decay is an infrequent event (the decay time is 4,5-10% years!) the difference
between Ey and E, is negligible,

v}

ol

FIGURE 117.

To find the decay probability in the first approximation, we construct
the wave function between R and R, in the quasiclassical approximation,
In this approximation

rp =¥ 7%,

p=@Vem(Ei—U)

(p is the classical momentum corresponding to the total energy E=%+ U).

Under the barrier p is imaginary and the exponent in the expression for ¢
is thus real. We thus have two independent solutions under the barrier,
one increasing and the other decreasing (see § 2). The probability W of
transmission through the barrier is proportional to the ratio | (R)|¥|¥ (R)|?,
which clearly should be computed for the decreasing solution, when it

is minimum:*

Rl
—1’- Yam (U—E,) dr

W=e¢e , (26.1)
nZyZye? m 1
W:e__h_’l E‘(I_T(”"Hm”‘))' (26.1')
— gin-1 R
¢ = sin R

R, is determined as the point where U — E; = 0. Note that if the Coulomb
potential U (r) is extended to R = 0 and R is correspondingly replaced by
zero as the lower limit of integration, the integral will converge to the
simple result

_nZiZye m _AnZZse*

W=e 7 VE =g ™ , (26.2)

’

* A derivatjon of (26.1) from the uncertainty relation can be found in /164/. The transmission of a wave
packet through a potential barrier is treated in /165, 166/,
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W — the transmission coefficient — is a nondimensional number. To find
the decay probability @ (the reciprocal of the decay time), the transmission
probability should be multiplied by the number n of « particles impinging

in unit time on the left wall of the barrier:

w = nW.

Here

R R

R~

v ~]/2(E,—Uo)'
m

This elementary expression* logically explains the fundamental property of
a decay, namely the vanishingly low decay probability in case of a high
barrier (for uranium W ~ 10-%) and extreme sensitivity of the decay
probability on E,, the energy of the « particle.

It is clear that even if all the physical prerequisites of the theory are
satisfied and we may actually discuss an individual « particle inside the
nucleus, the pre-exponential factor is evaluated only approximately.
Exact calculation of this factor is a complicated problem which requires
knowledge of the behavior of the wave function ¢ near the left turning
point and it therefore essentially depends on the topography of the potential
function inside the well.

According to the general theory, the situation depicted in Figure 17 is
characterized by a continuum of real energies and nothing else. In
principle, in addition to the continuum with E > 0, discrete levels with
E < 0 are also possible, but clearly if U, > 0 there are none.

What is the meaning of the energy E;? How are we to dissociate from
the continuum one certain value of energy? A hint is supplied by the
physical interpretation of the phenomenon. The wave function of a
particle in the nucleus (0<r<R) falls off with time. Right of R;, behind
the barrier, there is a current of particles moving in the radial direction
toward r-— oo,

Remember that the stationary states from a continuum of real energies
describe scattering of particles; the wave function far from the center is

. A eiperit £/
a superposition of the two wave functions nd

, i.e., a super-

position of the incident wave and the outgoing wave; the amplitudes of these
waves are identically equal in magnitude: the incident flux is equal to the
reflected flux, i.e., particles are neither created nor destroyed,

For the description of a decay we demand that far from the force center
there be only the outgoing wave. This does not contradict the particle
number conservation, because §|y['dr inside the nucleus decreases with
time. The macroscopic equation of decay is

dN
T:—wN; N=Noe“"‘,

*  More detailed formulas and derivations will be found in /167/.
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where N is the number of radioactive nuclei, i.e., the number of particles
inside a sphere r = R, In the given ensemble, N ~ [|y[’dr. We should thus
seek a solution of the form

{E,t wl

Lot &
b= T e T Ly

where E=El—i—§— is a complex number; its imaginary part [/2 is related

to the decay probability, I'= Zw.* We can thus separate the variables in
the nonstationary problem; ¥ (r, {) is sought as a product of ¥ (r) and an
exponential function of ¢, just as in the stationary case,

The analogy is even more far-reaching: in time-independent problems
discrete levels formed for E <0, when for large r the linearly independent
solutions had the form e'!*V/r and e !#I"/r; the solution could be given the
form e '*lfr for r— o only for certain discrete values of E.

Similarly, in time-dependent problems, we have two linearly independent

solutions e*7/r and e**/r for large r, and the sought solution will have the
desired form e*/r for r— o only 1f we select a discrete complex value
E =E, —il/2. Thus, the Sch. Eq.

% =[-8+ UO]v

which is a partial differential equation, is reduced by the substitution

Bt
Y=v%(r)e® to an ordinary differential equation

ma
[E YT U(r)]w(r) =0, (26.3)
and the boundary condition
lim 2059 _ LV n (26.4)

takes care of the discrete complex values of E,

This is the way to solve the physical problem and to find the energy of
particles inside the "'radioactive' barrier E;=Re(E) and the lifetime of
this state I' = —2 Im E (the relation of T to the decay probability w was
given above),

This procedure gives rise to numerous doubts as regards mathematical
rigor and foundation; the most remarkable point, however, is that nobody
questions the validity of the final result, i.e., the numerical values of E,
and w; "'only" the method of derivation is criticized. The main criticism
is associated with the form of 4 (s). Since E is a complex number, kis
also complex. Asymptotically § (r) ~ &*/r, It is readily verified that if
the imaginary part of E is negative, we have

= YIREL (T 4/7m
4h E
r lm (26.5)
e AVE
r)~g —_—

® The method of complex eigenvalues was originated by J.J. Thomson /168/, who applied it to the problem
of electromagnetic oscillations of charge on an ideally conducting sphere.
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(we expanded VE taking I'<€E,).

Thus the function (r) for r — oo grows exponentially (though slowly,
since T is small), * Such a function obviously cannot be normalized since
§[%{?dr diverges. In the next sections we will show how the solution of a
time -dependent partial differential equation ¥ (r, #) approaches the solution
with separated variable ¢ (r) eEt/n . The normalized function ¥ (r, #) in a
bounded region of space always approaches the non-normalizable y(r)e Et/n,

In § 31 we will show that even for the non-normalizable ¢ (r) there is an
expression that can be used as a norm in the perturbation theory and in
determining the amplitude of ¢ (r) for an arbitrary initial state.

Here we will confine ourselves to a physical interpretation of the growth
of $(r) for r— oo, At any time {4 we find at a given distance from the
center those particles which were emitted, i.e., tunneled through the
barrier, at a previous time ¢ =, — r/v, where v is the velocity of the
particles. However, on account of the exponential time dependence, the
amplitude ¢ at the center at the earlier time was greater than it is at 4.
Indeed the factor (1% ]/_2%_ r) can be written using the relation of T to w
in the form exp (% —%-) = exp (-;—’ (to—t)). Hence it follows that }(r, fo) =

= (0, fg — r/uv), 3

In conclusion note that all the theorems on the expansion of an arbitrary
function in a complete system of eigenfunctions applyto the $e (r) for real E,
Our ¥z (r) is thus not included in the complete system of eigenfunctions,
which is quite understandable in view of the nasty behavior of ¥; (r) for
r— oo,

The continuum eigenfunctions with real E close to E; = Re £ have a
special form; we will see in the following that the complex energy E
corresponds to a pole in the complex energy plane. On the other hand,
for this very reason the determination of %z () in a real problem with
arbitrary ¥ (r, £ = 0) requires application of a special technique, which
differs from ordinary expansion in functions of a complete orthonormal
system.

After this introduction we can proceed with a more detailed discussion
of the entire gamut of problems associated with the existence of compara-
tively long-lived quasistationary states.

§ 27. WAVE FUNCTIONS

We have already mentioned that quasistationary states are identified with
the poles of the scattering phase S (k) = e¥®® in the lower % halfplane. This
approach enables us to obtain various general results with regard to the
form and the energy dependence of the wave function for energies E close
to the pole, to find the scattering cross section, ete.t

Consider the pole of S (k) = e®®® at the point

ky = ky — iky

® It is on these grounds that Lamb /169/ objected to Thomson's method.

Similar arguments were already brandished by Love /170/ in connection with Thomson's method.
+ More detailed investigation of the analytical properties of wave functions will be found in /95, 171/,
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Ch.5. QUASISTATIONARY STATES

in the complex plane. At this point, the wave function ¥ (r) defined by its
asymptotic expansion (for simplicity we take ! = 0 and consider uncharged
particles)

X ()~ Y L sin(kr + 8 (k) (27.1)

identically goes to infinity for all r.

Let us establish the form of S (k) near the pole. We recall that S (k)
should satisfy the symmetry conditions (13.5) —(13.8): it should have poles
at the points k, and —%, and zeros at the points & and —k,; on the real axis,
IS (k= 1. The most general expression satisfying these condition is

(k — ky) (k + ko) (27.2)

S (k) = e¥i® () 2,
®) (k — ko) (k + kg)

where ¢ (k) is any function of £, which is real for real k and satisfies the
symmetry properties (13.5), (13.6). As a rule ¢ (k) is a sufficiently smooth
function, so that near the pole it may be treated as constant (it is some-
times called the potential phase).

In scattering problems the energy and the wave vector of the particles
are always real. The expression for the scattering phase is obtained from
the general relation (27.2) where k should be regarded as a real positive
number. For the scattering phase for k <€k, £~k we get

8 =¢—tan~! ki’kl' (27.2Y)

The wave vectors are generally replaced by energies:
. [ . i
(e — ika)? = g (K} — k) — Do) = Ey — T (27.3)

Here E, is called the resonance energy, and T is the level width (the
resonance width), Since in the % plane the poles lie in the lower halfplane,
in the energy plane they lie on the second (the so-called unphysical) sheet
of the Riemann surface; for '<<E, and E ~ E, we can readily derive
expressions analogous to (27.2) and (27.2'):

E—E — L 2
S(E) = evio ?\ , 8=g— tan-l = (27.4)
E‘—Eo+‘—2— ¢

Using these expressions, we obtain for the scattering cross section

n n I P r .
¢ = — S___12=_____ ———————r— —4Re | e®singp — -|-4Sln2 .
w F== [(E—Eo>’+-‘;i [ ¥ E—En+%] (P;

The first term here describes resonance scattering by the quasistationary
state [172/, the last term corresponds to what is known as potential scatter-
ing, and the second term to interference of the two other terms.

Let the potential V (r) have a finite range R, x{ is the regular solution
of the Sch. Eq. inside the potential range. We normalize this solution by

R
(o orar=1. (27.5)

o
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§27. WAVE FUNCTIONS
The total wave function is thus

AR)xQ@(r) for r<R, (27.6)
%) = '/ —2“— sin (kr + 8) for r >R, '

At the point k = &, this function should identically go to infinity. For
r > R this ensures an infinite S (k) and thus an infinite scattering phase 8§ (¥).
In the interior region x{ is bounded by assumption and the wave function
may identically go to infinity only if the coefficient 4 in (27.6) is infinite.
The coefficient A is calculated without much difficulty. To this end we
use the previously obtained expression (15.18). Inserting the scattering
phase from (27.2) or (27.4) and retaining only the dominant term, we find

R
_ A 2E /2 —
§*zw"T V = e=—mrror =40 (27.7)
The average value of the wave function is clearly
= 1 -~ i
X = gm AR (Do = g = 2 (27.7)

Outside the barrier ¥* ~ 1, which is much less than the maximum particle
density inside the barrier if I is sufficiently small. Physically this
implies that particles accumulate in the region r <R: a particle entering
this region remains there for some time before being allowed to escape
outside. The particle lifetime inside the barrier is greater than the time

of flight through this region © = % by the same factor as the particle density

inside is greater than the particle density outside. Hence we see that the
mean lifetime 1, of a quasistationary state for E ~ E, is equal in its order
of magnitude (more exact formulas will be given below) to

(x.._)max ~ i

A toy
1 v R

hoo A (27.8)
r Tr*

To~T

This time may be very large, which explains the origin of the term ''quasi-
stationary state'. We should again emphasgize that expressions (27.7) and
(27.8) apply to scattering problems; the energy E and the wave vector k are
therefore both real.

Qualitative analysis of various particular cases shows that the strong
dependence of the wave function on energy near certain points (poles) is
obtained only if the potential is in the shape of a well, with one or several
surrounding barriers (Figure 18). Indeed, consider a well with one barrier.
The wave function in this case is

A (k) y® (r) for r<{Ry;
i (r) = [FBA O+ BB L) for Ri<r <R, (27.9)
V %sin (kr + ) for r >R.

Here x is the regular (at the origin) solution of the Sch. Eq. in region I;
A (k), « (k), and B (k) are completely determined by matching the solutions at
the boundaries of the different regions. To be specific, we normalize %
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Ch.5. QUASISTATIONARY STATES

as in (27.5). The functions 3= and y* are two independent solutions of the

Sch. Eq. under the barrier (region II). Both these solutions are monotonic,
but one decreases and the other increases with increasing r. Qualitatively

their behavior is described in the quasiclassical approximation by the

expressions
X(*’(f)=exp{;t§]k|dr}; k=Y %?(E—U) . (27.10)

R
If the potential barrier is sufficiently wide and high, i.e., if § |kl dr>1,

the two functions are essentially different from one another for r ~ R, even
though they are equal for r=R, (x*®(R,) = 1) (Figure 19):

AIR) > x2 (R). (27.11)

The functions % and ¥ are not particularly sensitive to &, since &
enters only through the intermediacy of the term (E— U) in the Sch. Eq.,
which varies insignificantly for small changes in £. Matching of these
functions, however, may give rise to very pronounced energy dependence.
Indeed let @ and B, as determined by the matching conditions, be fairly
close to each other (the exact criteria will be derived below). In this case,
on account of (27.11), the interior wave function is approximately equal to
axM(R) for r =R and its logarithmic derivative hardly depends on energy
{since 3x* itself is not very sensitive to k). The phase §(k) is thus also
insensitive to energy, and the wave function % (r) has the form shown
schematically in Figure 20. It is significant that the wave function retains
this form in a wide range of a and p values. The necessary criterion for
this state of affairs is clearly

R

a |22 _ _ 27.12
B |>X(+)(R) _exp{ 2§‘|k|dr}. ( )
x } X”l

' /

xF  p—m————— -

./ V/4 /4

Ap

xl—)
£, R r A, R r
FIGURE 18. FIGURE 19,

The situation changes radically near the points where « (k) vanishes.
Indeed, at these points, the wave function under the barrier monotonically
decreases, (=1 (), and %(r) has the form schematically shown in
Figure 21. Thus, near the points k=&, where a vanishes, the wave function
abruptly changes passing through all the intermediate stages between the
cases depicted in Figures 20 and 21, It is clear that the energy dependence
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becomes more pronounced as the ratio xO(R)/x*(R) increases, i.e., as the
potential barrier becomes wider and higher. If there is no barrier, the
situation described here cannot arise, since Xx*(R) and x“¥R) will always
be of the same order of magnitude. '

X X

4 ¢ " AR

FIGURE 20, FIGURE 21.

§ 28, EXAMPLE OF A QUASISTATIONARY STATE

We will now investigate a particular example of a potential (see
Figure 18) in which a particle has a quasistationary state.
For r <R, or r>R the Sch. Eq.

Yo + R, =0
has two independent solutions et#*’, For Ry <{r <R
Xp— %%, =0, where x=Vx3—&, % =7)2mV,.

We will first find a solution which has the form e#" at infinity. It is
sought in the form
ek for r >R,
1P () ={ ae* + Per for R>r >Ry, (28.1)
ag’® -+ be % for r < R;.

Matching these expressions at the boundaries of the different regions, we
obtain for the coefficients

a=‘

(1414 emr—z,
(1— i) eseron,

a= Zi%ef’t (R~R))+xp {(1 + i%)’e—llp _ (l ——i%)’} ,

3 = o

(28.2)

b= z’:—ke"* (R+Riy+xp {(1 —_ e"’"’)(l + %)} ,

where p = R —R,. Taking the complex conjugate of y*(r), we obtain the
second independent solution

) = x§7(r) ~ e forr > R. (28.3)
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Ch,5. QUASISTATIONARY STATES

The general solution is written as
() =Y Z5hg (1 + 1) ~ YV 2 sin (kr+9). (28.4)

In the interior region, by (28.1), this function is

WO =— L3 {F1@+ty —S@+bcostr +
+[(b—a)'+S(b—a)]sinkr}. (28.5)
To make this function regular at the origin, the coefficient before the cosine

should vanish. Using this condition and (28.2), we thus find the scattering
matrix:

xp , ¥+ ik
e"’+mt(h)

* 4+ b° x — ik
S(k)=e‘"’=‘:z 5 _ , (28.8)
+b ®+ik g  w—ik
rirat®

where

L) = kcot kR, 4 %
T FcothR; —x °

If the barrier is sufficiently high and wide, so that xp3 1, e ig very
small, and dropping it in (28,6) we obtain

S (k) = e¥*R :_j'_it . (28.7)
Omission of ¢ in expression (28.6) for S (&) is permissible everywhere

except near the point k = k, where [(k) vanishes. Let us investigate this
neighborhood. Expanding { (k) in powers of (¢ — k,), we write

vl = g [+ (2) ] 0 4 ks e = V=R, (28.8)
The denominator in (28,6) is thus equal to
e ::;::: [1+ (,f;)'] (1 + %aRy) k;:" (28.9)
and therefore vanishes for k= k,:
bom by oo o lat il (28.10)

(x5 + £ (1 + %, R1)

S (k) thus has a pole at k= k,; we see from the expression for %, that this
pole is located in the lower halfplane. Using (28.9), (28.10), we write S (k)
near the pole in the form

k+ky
Smevaitp o, (28.11)
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§28. EXAMPLE OF A QUASISTATIONARY STATE

In the immediate neighborhood of the pole, the first two factors can be
treated as constant, putting

oM — g-unR ¥ T IR (28.12)

)(—l'kl ¢
Changing over from wave vectors to energies, we write S in the form

e E—Eo—ilp2
S(E)“emT—'-E:-i-—iI‘/.?’ (28.13)

where the resonance energy E, and the resonance width I are (et < 1)

Atk 3k
n . L= 16Ee™ ———nn (28.14)

Eo= X
° (%3 + B3P (1 + %,R1)

2m

It would be very enlightening to consider the physical origin of the quasi-
stationary states, Let the right-hand wall R of the potential barrier extend
to infinity. In this case the pole %, approaches &, and in the limit we end up
with a potential shown in Figure 18 by the dashed line, Clearly the spectrum
for k<%, with this potential is a discrete spectrum, All states vanish,
except the one at k = k,, when

kycot ksRy+u,= 0,

and the wave function falls off at infinity as €™". Thus, in the limit as
R — o0, the quasistationary state is replaced by a true stationary state.

Let now R be a large but finite number. In this case the true stationary
state cannot exist, so that particles from the interior region r <R will
tunnel through the barrier and escape to infinity. The stationary state is
thus replaced by a quasistationary state. Since the probability of this
“tunneling'' for large xp is very low, the decay time T is extremely high,
Clearly, if we are concerned with short times, when the decay probability is
ignorable, the unstable state may be treated as an ordinary stable state.
In other words, a "quasistationary' state is defined as a state which
replaces the stationary state when a finite decay probability has to be
considered. '

Using the argument of the previous section, we can readily estimate
the lifetime 7T

- T4
TaTo gz

ERfDA Tlo=

IS

Physically we can speak of a quasistationary state only if T is greater
than the free time of flight 1= go—. This condition is met in a certain

energy range AE around E, Taking T/t>1, we obtain in an elementary way

)

by
AE|< -V Lo,

Hence it is clear that the concept of a ''quasistationary state' is not
rigorously defined. The only condition for the formation of a relatively
long-lived state during the scattering of particles by a potential barrier
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Ch.5, QUASISTATIONARY STATES

is that the particle energy differ from E, by not more than AE. It is in this
sense that we say that a quasistationary state of width I' has no fixed energy
and is ""spread’ over a certain energy interval ~ I' VTt > T,

As an illustration, consider the following example. Suppose that besides
a quasistationary state of energy E, and width T there is also a bound state
of energy E,. Consider a process in which a particle of energy E is
scattered by this potential and emits a v quantum, dropping to a bound state
with energy E, (radiative capture). The probability w (E) is determined as
always by the square of the matrix element

w (E) ~ | (xe, Oxy) P,

where 0 is the electromagnetic transition operator and yx, is the wave
function of the bound state, which differs from zero only in a small neigh-
borhood of the potential. Therefore the energy dependence of w (E) is
mainly determined by y%:

w (E) = const- ¥ = const - w_‘;:—)/:‘m.

If the scattered beam is monochromatic, monochromatic 1 quanta of
energy E —E, are emitted. However, the probability of v quantum emission,
as we see from the above relation, is highly sensitive to particle energy.
w (E) is high only when E is close to £,.

Now suppose that the incident beam contains particles of various
energies E spread within an interval AE> I', Radiative capture operates
only for particles having energies close
to E,. Correspondingly the energy of
the v quanta will be close to E, — E,, and
their spectrum will have the schematic

w(f)

|
: 7 form of the curve shown in Figure 22,
! The width of the resonance curve is
! determined by the shape of the w (E)
: curve and is equal to T,

£, £ The width of the ¢ quanta spectrum

FIGURE 22, is thus determined by two factors: the
energy spread AE in the incident beam
and the width I of the resonance level.

For AE = 0 all quanta have the same energy E —E,. As AE increases

from zero to [, the scatter in the energy of the T quanta also increases.

As AE is further increased, however, the energy spread of the emitted

quanta remains invariably of the order I'. Thus for I' — 0 the quanta can

always be treated as monochromatic, irrespective of the beam energy
spread AE., It seems as if the scattered particles are first trapped by

a virtually stable state with energy E, and then drop to a lower state y

emitting a quantum.

For small but finite I', the quasistationary state is said not to have a
definite energy. Note that in every particular instance a state with fixed
energy E, equal to the energy of the incident particle, is formed, The
energy uncertainty of the quasistationary state is to be understood only in
the sense that for any energy value E from the interval |E — E| T
a relatively long-lived state may form.
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§29. DECAY OF QUASISTATIONARY STATE

We have derived a number of general formulas for quasistationary states.
In their derivation we used only the energy dependence of the wave function
associated with the pole term in S (k). All the other quantities were treated
as constant. If we are concerned with the energy range not too near the
pole (|E — E,| >T), this procedure is not very reliable and the actual form of
the potential should be taken into consideration in calculating the energy
dependence of all the physical quantities. In other words, in these cases
we can no longer introduce the general concept of a "quasistationary state'
which depends on the potential through E, and I only, There is no fixed
boundary between real '"quasistationary'' states and states which are
essentially dependent on the form of the potential. Various authors draw
this boundary in various places depending on their personal tastes and
needs. Often the position of this boundary is decided by the particular
author's wish to interpret the experimental data as supporting one of the
several theoretical alternatives.

To avoid confusion, note that when we say anything about a "quasi-
stationary' state, we mean that the agsertion is entirely true only in the
limit as I'— 0.

§ 29, THE DECAY OF A QUASISTATIONARY STATE

We have seen that rigorous treatment of quasistationary states is
impossible without taking into consideration the particular physical
process leading to the formation of the state. If we are dealing, say,
with potential scattering of particles with formation of a '""quasistationary'
intermediate state, the process is described by the function %,(r) introduced
in the previous section in connection with scattering problems. The
""quasistationarity' emerges here only as an exceptionally large value of
the wave function inside the barrier., Quasistationary states produced
by various reactions also have their own specific wave functions. Finally
we can consider the problem of the decay of a quasistationary state. *

In this case we again will be dealing with a characteristic wave function.
In the present section we will derive this function and try to analyze its
properties. In doing so, we follow Drukarev's method /173/.

The problem is formulated as follows, Consider a potential barrier
(of the form depicted in Figure 18). At the time ¢ = 0 the wave function
inside the barrier is y,(r); it is zero under the barrier and elsewhere,

We are interested in finding the evolution of the wave function in time,
i.e., the function ¥ (r, #) for ¢t>0. This is a nonstationary problem and to
solve it we naturally need the time-dependent Sch. Eq.

By = — g X"+ UX (29.1)

with the initial condition %|i= = %. The wave function is further required
to remain bounded for all r and £. Following the usual technique, we seek
% (r, #) in the form of an expansion
o0 _‘ﬂ
1, = de@rme ™, (29.2)
0

® Various aspects of the decay of a quasistationary state are considered in /173—177/,
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where Y%, (r) are the solutions of the time-independent equation
K.
— 5 + ka = Exk’

normalized to 8 (¢ — &), These solutions outside the range of the potential
have the standard form

L=V Lsin(er +8(k) = Y L o (S" Byetr — S (k) ). (29.3)

The function c (%) in (29.2) is found from the initial condition:
c(k) = § driote. (29.4)
0
The dependence of ¢ (k) on k should clearly be the same as for the wave
function yx,. Thus, c(k)is representable in the form (compare with (29.3))

c (k) = S (@ (k) S () — a (— ik) S (k)), (29.5)

where a (ik) is some smooth function of 2. The above expressions show that
the integrand in (29.2) is an even function of k. Using this fact, we write
(29.2) in the form

_ et

% t)=—#_§mdk (o (i) S (#) —a (—ik)]e P (29.6)

We now introduce a new variable
iht mr
y=1y T(k_ ﬁ)- (29.7)

Substituting this variable in (29.68), we obtain

Vico imrt
v, =B § dyevia@r@)SkE)—a—ik@), B=—) Sewr. (29.8)
—Vico

The integration path in this integral (Figure 23) is an unsuccessful choice,
since everywhere along this line e is an oscillating function. We therefore
rotate the integration path so that it coincides with the real axis. ¢ now
rapidly falls off in the direction of both positive and negative y.

The functions a are smooth and without any singularities, so that they
do not interfere with this deformation of the integration path. The situation,
however, is different as far as S (%) is concerned, since we definitely know
that this function has singularities. Let us find their position in the complex
plane.

The most general expression for S (k) in the case of a single quasi-
stationary state is (see (27.2))

(k— ko) (k + ko)
S(k) =S, (k é._,
(B =50 () (& — ko) (& + k)
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§29. DECAY OF QUASISTATIONARY STATE

Here S, (k) is some smooth function of %, k is the pole. Changing over
to a new variable y, we find

(s+ V B+ V G+ 1)) (29.9)

S((9))=So(k(s)) - ' '
D R ) V )

We should distinguish between two cases.
(1) r>vt, where v, is the velocity corresponding to resonance energy,

.

v, = h—:—:—, ky is the real part of %k, k,= k, — ik;. In this case the poles of

S (& () lie in the diagonally hatched regions in Figure 23 and do not interfere
with the rotation of the integration contour toward the real axis. As the
integrand in (29.8) contains the exponential function e+, the main contri-
bution to the integral comes from the region y = 0and we approximately get

%n (r, &) = B VrS"(k (0)) ic (k (0)), (29.10)

where the subscript n refers to the nonresonant case, Here S (k) and c (k)
should be taken for the value of & corresponding to y= 0, i.e., k(0) = %

Thus k (0) is the value of the wave vector k which characterizes the particle
emitted at the time ¢= 0 from the origin and reaching the point r at time ¢.

4 ¥

ﬁ«"x

FIGURE 23. FIGURE 24.

We see from (29,10} that the function y, (r, ) is entirely determined by
the coefficient ¢ (& (0)), which specifies the fraction of the initial state
corresponding to particles of wave vector k(0). Thus, X.describes
particles which left the origin at time ¢= 0, i,e,, immediately after the
formation of the initial state %. Physically this means that particles with
this % leave the region of nonzero potential instantaneously, without
lingering there.

A more complex situation arises in the second case:

(2) r<ovt. In this case r and ¢ are such that at the point r we can
observe both fast particles with v >> v, and slow particles with v < v,. We
see from (29.9) that the poles of S (£ (9)) in this case are located so that one
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of them obstructs the rotation of the integration contour toward the real
axis. This is the pole situated in the unhatched region of Figure 24 at

the point
n=V g (5 (v.— &) —ita).

Thus in calculating the integral (29.6), we obtain two terms: one contri-
bution comes from the region y = 0 and the resulting term is entirely
analogous to y, in (29.10); the second contribution comes from the pole.
The final result is

X(’J)=Xn(f,t)+)(x (l',t), ] (29'11)
% (r, ) = —2niBa (ik,) e v Res S (k (1)).

The first term %, has the same meaning as before. It corresponds to
r

particles of velocity v =+

instantaneously escaping outside the potential range.

The second term is much more interesting, Although the pole y = y lies
far from the real axis, it gives a substantial contribution to the integral,
and the second term may thus be much larger than the first term. This
is so because ¢ is definitely not small at the pole. Reverting from yto
the original variable &, we write the additional term in (29.11) in the form

ipr— B¢ _ T (, T
Ao (s t) = VIna(ik) Solko) e " w(57) (29.12)

All the smooth functions are taken at the point k= k,, i.e., at the pole
corresponding to a quasistationary state; %: describes a traveling wave
whose front propagates with a velocity v,.

Let us estimate the coefficients ¢ (#) and a (ik) entering %, and x,. For
¢ (k) we have

R
c(k) = { Aoludr ~FoR (29.13)

0

(R is the range of the potential). To obtain an estimate for « (i%), note

that for & =~ k,, the function %, may be written in the form A (k) x(r), where
%® ig normalized to unity (see (27.5)) and A? (k) has a pole at the point k£ =k,
(see (27.7)). We thus have a chain of equalities

R
o (k) = (@ (ik) S (&) — o (— ik) S (k) ~ AS %X dr ~ A%, Y R.

Since for k—k,, S (k) -0, we have
a (i) = T VRImS™ B) A®) = — L VRS:™ (&) V _ (29.14)

Note that there is a definite analogy between ¢ (k) and & (ik). To illustrate
this point, consider the solution

T (r)=2i ]/ % Sy, (r) ~ ettr — ™1 (k) e-i*",
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which for k — g, reduces to the solution ¥, corresponding to a complex
ir

energy eigenvalue E, — 4 with the asymptotic behavior of e*", The corre-

sponding overlap integral ¢ is
¢=\Ruxodr =i Y2n "¢ (k) = VI (a (i) — o (— ik) S (&)
Taking the limit as k- k,, we find

@ (tke) = 2= tonadr. (29.15)

Thus ¢ (k) and « (ik,) are both overlap integrals with ¥, although different
functions are involved in the two cases: c¢ (k) corresponds to functions with
real E and a (ik,) to functions with complex energy eigenvalue,

In analyzing (29.10) —(29.15) we should remember under what conditions
they were derived: in taking the integral in {29.8) the integrand (with the
exception of ¢+') was assumed to be relatively insensitive to y for y~ 0.
This is true if all the factors in the integrand in (29.8) do not change much
when y is incremented by unity.

A change of y by Ay ~ 1 corresponds to

e~ (2"

The treatment is legitimate if Ak is less than the interval 8k where S (k) and
a (ik) may be regarded as constant.

In nuclear physics, a characteristic nonuniformity length is 1keV, and
the energy is of the order of 1 MeV; we have

Hence we obtain the time ¢ starting with which AR < 8:
t>z%%;-i£;0£%.:= 10-B gec,
In atomic effects, 8E~ 0.1eV, E ~ 10eV, so that
t>9:1—‘0'—.170,-—” = 10"12gec,
In elementary particle physics 8E ~10MeV, E ~ 1000MeV, so that
t>ﬁ)—:0'_1,—?_“ = 10-20 gec.

These estimates show that expressions (29.10) —(29,14) are valid for
virtually all measurable times. It is only at the very first instants following
the start of decay that these expressions do not apply.
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§ 30. RADIOACTIVE DECAY

The physical meaning of the various expressions in the previous section
is perfectly clear: at the time ¢ = 0 the wave function ¥, (r) did not corre-
spond to a state with definite energy. The probability of finding the particle
with energy E (and wave vector k) is proportional, by the general postulates
of quantum mechanics, to the square of the matrix element (0|k) = fpupsdr .
Therefore, from the standpoint of elementary physics, the ''spreading'’ of
the initial state can be described as follows: if the particle with energy E
does not linger inside the potential barrier and escapes instantaneously, it
will reach the point r = vf after the time f. This is precisely the meaning
of (29.10) and of the first term in {(29.11): the amplitude of the wave function
at the point r is proportional to the amplitude of the state with energy E (and

corresponding velocity v= ";’i) in the initial wave function.

If now E is close to the energy E, of the quasistationary state, elementary
kinematic considerations lead us to expect that no such particles will yet be
observed for r > vit: none of them could have reached these points by that

time. If r << uyt, however, these particles
should be observed for all r, since if a

yr(,;t)I’ } state has a certain lifetime T, these
particles are observed not only at the
Y, point r = y,t but also at the point

r =v,(t —1). Ifthere is a probability

P (1) that the particle has a lifetime 7,
the particle density (at a distance r from
the source at time ¢) should be pro-

n=vt »~ portional to P (r~£). This is in fact

FIGURE 25, the case represented by the second,
resonance term in (29.11), Moreover,
from the form of this term we conclude

that for E ~ E, a '"quasistationary'' state is formed, and the probability of its

I't

decay at time v after formation is proportional to ¢ *. We thus arrive at
the well-known law of radioactive decay. The probability density distri-
bution of particles [$(r,#)® at time ¢ has the form shown in Figure 25. The
maximum at small r corresponds to the region inside the barrier, and the
maximum at large r corresponds to decay of a ''quasistationary' state at
t = 0, instantaneously after its formation; this peak advances with velocity
v,. Owing to continued decay, the particle density in the quasistationary
state gradually decreases. To the right, i.e., for r > yt, the probability
density is less, since the "decay' products have not yet reached that
region. The finite "background'' of particles for r > vt is associated with
the wide range of particle energies present in the initial state.

Note that in the stationary theory the wave function of a quasistationary
state is generally adopted as the solution @(r, {) of the Sch. Eq. which

ir
satisfies the boundary condition at r = 0 and behaves as e‘w_«ﬁ'_—')t (kyis a

complex number) for r — oo, On the other hand, for real £, we have the
wave function of the scattering problem, whose asymptotic expression is

{Et Et

e * ~L ) 2 (e S (k) — e S (k) € . (30.1)
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A quasistationary state corresponds to a pole of S (}). Dividing ¥ (r) by

1 . -
-17_2,—‘3‘/: (¥) we find that for 2 — k, the second term vanishes and

1 Von -5 30.2
F,(T)X/.(r)e k-.k.(pk' (f, t). ( . )

Thus the two solutions are intimately linked with one another. The advantage
gained from the introduction of the function @, is obvious. First, the 4, for
which the Sch. Eq. has a solution of the form ¢, directly determines the
position and the width of the quasistationary state. Moreover, comparison
of (30.2) with (29.12) shows that ¢, for r< u¢ faithfully reproduces the
dependence of the true wave function ¢ (r, {) of the decaying state on r and ¢
{here t is reckoned from the time of formation of the decaying state).

The problem of the allegedly exponential character of radioactive decay
is often discussed in the literature /178 —180/. In this connection we wish
to make the following remarks. From expression (29.11) of the previous
section we see that |$(r, f)}* is a nonexponential (decreasing) function of time,
This is understandable, since by specifying an arbitrary initial state ¢ (r),
we form a superposition of an exponentially decaying quasistationary state
and a packet of particles with a continuous spectrum, which in fact introduce
the first nonexponential term in (29.11), * This is a physical inevitability.

If the resonance term is the dominant term in ¢ (r, #) (which is almost
always the case), the decay is exponential, That the resonance term is
almost always dominant can be easily verified. Using the expressions of
this chapter, we readily estimate the ratio of the squares of the moduli of
the first and second term in the wave function (29.11) for r<€ v, To orders
of magnitude we have

s
ettt .__o __: ellte, fo=—o. (30.3)

" The dependence of this ratio on #/f, is schematically shown in Figure 26.
It is clear from the figure that the nonresonant term is greater than the
resonance term of the wave function only for very small (¢ < #) or very
large (¢ > 4) times. For # and f; we have approximately

r,
"""“ET.'E (30.4)
tgzto In To.

For intermediate ¢ values, the resonance term dominates. This means
that for all { between the limits # < ¢ < 4 the decay is practically exponential,
In the particular case of alpha decay E, =~ 1 MeV =~ 10-%erg, 1 3= 1sec,

[ € 10-%eyv =~ 10" erg. Hence

fafto ~ 1073 fafty ~ 50. (30.5)

® When a complete system of stationary states is used, the nonexponential character of decay follows from

the Krylov—Fock theorem /181/ (which states that the decay law is completely determined by the energy
spectrum of the initial state), since the energy spectrum of the initial state is bounded from below.
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We see from these estimates that alpha decay follows the exponential
curve with astonishing accuracy. Deviations from the exponential law
can be observed only at the very first instant following the formation of
the decaying state or for very large
times (> 504), when virtually no

A decaying element has been left

€% = 10%),

The radioactive decay is thus seen
to be exponential if the resonance width
[ is sufficiently small (<€ Ey). In
nuclear physics E, is of the order of
1 MeV and to ensure exponential decay
we should have '<€ 1 MeV. In elemen-
tary particle physics £,~ 100 —1000MeV.
In atomic physics E, ~10eV. In these
cases we respectively have I'<€ 100—
1000 MeV and T<€ 10eV.

We should always remember,
however, that the preceding treatment
is based on one highly significant assumption. In deriving the relations of
the previous section we assumed that (0jt) = [¥obedr, S, , and a did not depend
much on k, This is not always so. We can create a wave packet with
energy spread

FIGURE 26,

AE<ST

and mean energy E lying somewhere in the interval [E,—T, E,+ Tl. In

this case, all the quantities of the form §,, @ will be highly variable in

the region around E and a direct calculation will show, as in the previous

section, that the decay has nothing in common with the exponential function.
In other words, we may say that for AE>T the probability of formation

of a quasistationary state with energy E is independent of AE and is given by

/2
w ()~ G Er T
(this is known as a Lorentz distribution),

If the probability distribution is not a Lorentz distribution, the decay
is not exponential. This case is readily realized in practice. Consider
an atom in the second excited state, whose width I, is much less than the
width T, of the first excited state. Suppose that a cascade gamma transition
is allowed: the system emits a quantum ¥, (of energy %w,) and drops to the
first excited level; then it emits a quantum ¥, (of energy %w;) and drops to
the ground state. The energy of the quantum v, can be measured; ho,is
measurable by modern techniques with an accuracy A (hw,)<€T,. The first
excited level, however, is not populated according to the Lorentz curve:
only a certain part of the level is filled. The decay of the first level thus
is not an exponential function of time.

If, however, I3>T, and the second level is completely filled (i.e., in
the entire energy interval AE ~ I,), the first level is always populated
according to the Lorentz curve and therefore decays exponentially.
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§ 31. PERTURBATION THEORY FOR
QUASISTATIONARY STATES

We have so far mainly concentrated on specific decay properties of
quasistationary states. Formally these states constitute a continuum,
although on account of their fairly long lifetime they have a number of
physical and formal properties which are reminiscent of stationary states.
In particular, we can introduce an effective normalization integral for
quasistationary states and derive a number of results which are very
similar to the corresponding results for stationary states.

In our treatment of the perturbation theory for quasistationary states, *
we follow the presentation of /183/.

Suppose that in an unperturbed potential V (r) the particle has a quasi-
stationary state at the point k) = k, — ik;,. We now add a perturbation 8 to
the potential., How will k4 and 4 (i.e., the position E, and the width T of the
resonance) change ? This problem can be solved as follows.,

The wave function ¥, (r) is replaced by its logarithmic derivative,

r

f ) ’ !
zy(r) = %ﬁ%; Yo (r) = exp{§zk(r )dr}.

Using the Sch. Eq., which is satisfied by X (r), we readily find an equation
for z,:

2 (r) + 22 () + (B —V) = 0. (31.1)

Since for a state of momentum [ the regular function %, behaves for

small r as ar*t, where a = const, we have z(r)— H;—i irrespective of the
r-0

potential, For large r, this solution behaves as e* and z(r) — ik,.

r—+00

We now introduce a perturbation 8V, 2z, acquires an increment 8z, and
the position of the quasistationary level shifts &k, — & + 6k. From (31.1)
we obtain for 6z,

(B2 = —2282; + 8V — 2,k (31.2)

Since the limit of z(r)as r— 0 is independent of &, 8z should satisfy the
boundary condition

82, (0) = 0. (31,3)

The solution of equation (31.2) satisfying this boundary condition is clearly

r

82, (r) = exp {— 2 §Zk,dr} S {["’V (r'y ~

r
” § 18V () — 2obko) %3, (r') dr’

_ nar\dr — (31.4)
2kodko) exp [2§ 24, (r") dr ]} dr ¢

A%, (1)

For large r, when ¥, ~ Cer, the logarithmic derivative is always equal to
iky and 8z (oo} = ibk, gives the correction to the energy and the width of the

This theory was first developed apparently in /182/.
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quasistationary state. From (31.4) we have for this case
r r
i 8ko (Cetdr)d = — 2k 8k, S W, (rydr + Savxgo(r') dr’,
] [}
which may be rewritten as

S xﬁo 8V dr’
2ko ko = Ok = 5
ko

3 .
Sxkn 4" — ke
(1]

(31,5)

Strictly speaking, this expression is applicable only if V and 6V both vanish
starting with some r = k., It is only in this case that (a) for sufficiently
large r, Cettr =Y, , and (b) the upper integration limit can be extended to
infinity.

Expression (31.5) is the solution of our problem, The perturbation
alters the position and the width of the quasistationary state:

Eo— ﬂ—»—— (ko + Sko)2.

Expression (31.5) is very similar to the general perturbation theoretical
expression for level shift. There are only two differences: first it contains
the square of the wave functions %3 and not the square of the Jnoduli |X,

second, the ordinary formula has the normalization integral S|X;, [*dr in the
denominator, which is not what we have in (31.5). Note that tohe integral
Slx"- [*dr diverges, since the integrand increases exponentially for r— oo,
Tohe integral \xidr is also meaningless according to the usual definition,

[}
but since the integrand increases for r-— oo while oscillating, we will
show how to regularize this integral. It is not sufficient to multiply the
integrand by e and let @ go to zero. We can show, however, that

[+:] [+
1irgS 13 (ryeardr =S [x3, — (Cettw)) dr-—mo (31.8)
= H 3

exists, so that the denominator in (31.5) can be treated as a normalization
integral of the function ¥%,, . *

* Indeed, as is readily seen, the integral is expressible in terms of the error function ©@:

o0 [+ )
S eArH i kikr gy S gartar (cos 2kyr + i sin ki) dr =

VAl 8

Since @ — 0, we may use the asymptotic expansion for @

i

=3 ket ko =
i § e g o LY EELEN VR
a0 =7 a R ko 2ikg
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Therefore if we define as the normalization integral the limit

oo

§x1.dr = 1im {3 e=rar, (31.7)
0

a0 0 ’
we can rewrite (31.5) in the more familiar form

§ 8vig,dr
M=t (31.8)

§ xhar
o

The above definition of the normalization integral for quasistationary
states is quite useful in a number of problems. In the next section we will
show, for example, how to apply this technique to the calculation of the
coefficient a, which determines the intermediate asymptotic behavior of
the wave function.

§ 32. THE ASYMPTOTIC EXPRESSION OF THE WAVE
FUNCTION FOR r—00 AND t— o0

This problem was considered before, but then we were mainly interested
in the physics of the process. Now we can concentrate onthe formal aspects.
We will derive an asymptotic expression for the wave function ¢ (r, #) for
r— oo and ¢ — oo taking $ (r, 0) = ¥, (7).

This problem was solved in [183/ by Laplace's method. We will apply
this method to a spherically symmetric problem where the potential V (),
the sought function ¢ (r, ), and the initial function % (r, 0) depend on r only.

We introduce a new function ¢ (r, s),

o

vir, )= —i\ ey, ndt (32.1)

0

Taking s =%+ io, we find that

v ) =—ifesvr, Hevdi= § 1, nevar, (32.2)
0 -0

i.e., P (r, s)is a Fourier transform of the function

fir.t)=0 for t< 0, : (32.3)
flr, &)y = —iep(r, t) for ¢>0.

On the other hand, forR <r,

o ¢ .
%} (r) —(Ce*™ )3] dr — =1lim \ dr [y} (r)— (CE* )" +
§ 3, () —(CeMy dr — 5 Mg () —(

+ lim S & (CEWP dr = lim S eyl (ryar.
a-ooo a-+0 ¢

We made use of the fact that the cutoff factor ¢~*" in the first integral does not alter the value of the
integral for @ —0, as the term in brackets is zero for r > R.
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Inversion gives f and we find after elementary manipulations

+oo4-ic
ir, t)= _7:; S Y(r, s)e's ds, (32.4)
—00+-{0
The integral in (32.2) exists for f which falls off ast - o0, i.e., for ¢ >0.
However, we will also consider ¥ (r, s) for ¢ < 0; this can be defined as the
analytic continuation of the function ¥ (r, s) defined by the integral for ¢ > 0.

®

FIGURE 27,

Consider the Sch. Eq.
A i L
D B A+ U e b
Multiplying by —ie** and integrating with respect to time, we find
—ASY (7, 5) — g0 AY (7, $) + U (1) 9 (r, 5) = — B (1) (32.5)

Here we assumed that for r > R,

lime#styp(r, t) = 0,
t-»c0

which implies 6 >0, i.e., the point s lies in the upper half of the complex
s plane (Figure 27). We further take

Yo () =U(r)=0 for r >R. (32.6)

Then, for r >R,

ams

v =foLeV T et VR (32.7)

For ¢ > 0 we define J2ms as the positive root on the positive real axis in
the s plane; to ensure single-valuedness, we make a cut along the negative
real axis (6 =0, n<<0, s =10+ io). Clearly, for ¢ > 0 the modulus of the
first term in (32.7) exponentially decreases for r — o and the modulus

of the second term exponentially increases, But for ¢ >0, when ¥ (r, s) is
defined by a convergent integral, ¢ (r, 5) is known not to increase for large r.
We therefore take f,(s) = 0.
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In other words, if ¢ (r, s) is defined as the transform of the solution of
the time-dependent Sch. Eq. and natural restrictions are imposed on the
initial state ¥, (r), we find that ¥ (r, s) should match the outgoing wave

o9 — Fe LV

This conclusion was originally obtained for the upper s halfplane. As we
have already noted, in the lower s halfplane the function ¢ (r, s) is defined
not by the integral but as the analytic continuation of the ¥ (r, s) defined in
the upper halfplane. Therefore, the condition of matching with the first
term in (32.7) must be retained in the lower halfplane too.
The decaying state satisfies the equation
— EE (r) — 0= AVE (1) + U (r) ¥ (r) = 0 (32.8)

2m

and is matched with an outgoing wave for certain E= E— /2. Hence the
potential U (r) is such that equation (32.5) with zero right-hand side has a
nontrivial solution for ks = E.

Hence it follows that the general solution of the inhomogeneous equation
(32.5) should have a pole at the point s = E, i,e., in the lower quadrant
of the s plane. The solution will have the form

lim o (r,s) = i‘f‘i‘ii + Palr, s}, (32.9)

where ¥, (r, 5) is bounded for ks = E,

The problem thus reduces to the determination of the coefficient a,
To this end we multiply (32.5) by ¥=(r) and (32.8) by ¢ (r, s), subtract one
from the other, and integrate from 0 to R, Remembering that outside
the range of the potential for ks = E we have

smE gms
vy =LV T v =tV

C
FO) = w%=g
we obtain after simple manipulations

(hs—E){———ﬂ”——+

+{[vc.aven—re £ AV~ V—’;T'E')']r’dr}=§tpo () e () rdr.

We now insert

v ) = 22D 4w 9),

IV”—:s-r c 1 IVE%'!:-
e a
) ——=m=g7¢ ,
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take the limit as ks— E and extend the integrals to R = oo, remembering
that the integrands vanish for r > R. All this gives

o . m . o ()XY (1)) dr
=S‘Po(r)¢5(r)r’dr /{S [\p;(r)_(C_‘l_‘C—"—-)]rw 4 ’;_3;} éii__"’i)_ (32.10)

S (rbg () dr
Q

oo

-]
where the integral S (rbg)dr= S ¥1dr in the denominator is understood in the

[ [}
sense of expression (31,7) of the previous section.
Inserting (32.9) in the inversion formula (32.4), we obtain the contribution
from a path bypassing the pole Ais=E:

8t e § (o () (g () dr
Yo )=abglr)e " =Pp(r)e Il ——. (32.11)
§ (g () ar
[

In this form the expression is entirely analogous to the ordinary expres-
sion derived for negative real eigenvalues in a discrete spectrum. The
o0

scalar product Sr’%\pgdr and the norm Stp}:-r’dr in the sense (31.7) enter on

equal terms both the perturbation theory and the nonstationary problem,

§ 33. CREATION OF AN UNSTABLE PARTICLE

Suppose that a pair of stable particles react and are converted to a
different pair of stable particles:

at+X—->b+Y. (33.1)

How will the reaction change if one of the product particles, say Y, is
unstable and eventually decays, i.e.,

Y —c+d. (33.2)

First it is clear that for r— oo the particle Y will never be observed; we
will only find its decay products. Formally we are thus dealing with a
three-particle reaction

X+a—sb+c+d (33.3)

In what follows we shall see, however, that this process may follow
two distinct courses, or channels

b+c+d,
7
X+a (33.3')
N
b+Y—-bt+c+d,
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i.e., with direct formation of the three particles and in two stages, when
first the reaction produces b + Y and only then does Y decay into ¢+ d.

A particle-creating physical process can be described in the following
way. The incoming particles collide and form an intermediate state in
which the particles are rearranged, The radius R of the intermediate
state (reaction radius) is generally of the order of magnitude of the range
of the interaction forces between the particles, After a certain time the
intermediate state decays either into the original reacting particles or
into some other, new particles. The former alternative is the simple
case of elastic or inelastic scattering, whereas the latter case is a reaction.
The intermediate state can thus be regarded as the source of particles
created in the reaction. The particle creation process in reaction (33.1),
say, can thus be formally described by a Sch. Eq. with a source:

(Hy+ H.+ Hy + Ug — E)op = Q, (33.4)

where H,, H., H; are the Hamiltonians of the free particles &, ¢, and d, Uy is
the interaction potential between ¢ and d, and Q is the source function,

In general @ depends on the total energy E, but in all the cases that we
will deal with this dependence can be neglected.

In equation (33.4) for simplicity we ignored the interaction of particle b
with particles ¢ and d. The potential U,, however, cannot be omitted,
since this interaction is directly responsible for the very existence of the
unstable particle Y,

We will now derive general expressions for the rates of various reactions
described by equation (33.4). To cover the main cases, we will assume the
interaction between ¢ and 4 to be such that

(a) there exists a bound state of the pair ¢ + d with energy —e, (g, > 0);
this state we call a particle Y,;

(b) there exists a quasistationary state of the pair ¢ + d with energy E,
and width T (unstable particle Y).

To facilitate comparison between creation of stable and unstable particles,
we assume both Y, and Y to have zero spin. Depending on the total energy
E, we distinguish between different processes:

1) for E<C—z¢,, both reactions are equiprobable from energy standpoint;

2) for — e, << E < 0, only the reaction with formation of Y, is possible;

3) if 0 < E<E,, in addition to Y, the three particles b 4+ ¢+d may form
in the free state, but the formation of Y is still forbidden;

4) the formation of the particle Y is energetically allowed only for E > E,.

We will now consider the various cases one after the other.

In the center of mass system, the Sch. Eq. has the form

(— g2 B — 3 A+ Uaar) —E) =C. (33.5)

Here r is the distance between ¢ and d,
r=—r.—"rq

p is the distance from b to the center of mass of the pair (c+d),

Mre + myry

= Py —
e b m.+my; *

135



Ch.5. QUASISTATIONARY STATES

and m and p are the reduced masses

_ mgmy _ my(m,+my)
T omy4my my+m. 4+ my -

Using expression (20.2) for Green's function, we write ¢ in the form

o(r.p) = 2;;; S de G (r, 1) GEe (01 1) Q (r1, 1) dry dpy, (33.6)

-0

where G, and Gg_, are the one-particle Green's functions

(— g Art Uea—8 )68 (ruri) =8(r —r),

(— % A»—<E—e))G‘E*l.(p,m) =3(p—p1).

The wave function ¢ (r, ) depends on two coordinates. However, it is
clear that to find the number of creation events of the three free particles
b+ ¢+ d it is sufficient to find the current of one particle only, say b.

We thus expand ¢ (r,p) in eigenstates of the pair ¢+ d.

The complete system of wave functions of the pair ¢ + d comprises the

wave function of the bound state (the particle Y,) 1 %(r) and the continuum

Véarn r

wave functions ¥§’(r) normalized to & (¢ — &,). The expansion thus has the form

?(r p) = Po(p) o= 2200 + (e v () 2, (p), (33.7)

where
®o(p) =S ¢(r p) ——VZ—N L% (rydr,
(33.7")
4 (0) = 9(r, )9 (r)dr.
The left-hand sides of these expressions can be treated as wave functions of

particle & when the pair ¢ 4 d is formed in the bound state and in the continuum
state, respectively.

Using the properties of Green's functions from Chapter 4 and the relation

10 e 1
ol S dey GE2,, (p, Pl)m = —Ge-(p, p1),

we find from (33.6) —(33.7")

ooy .
o), SR Elmdeeme AR LS
Ou 0~ 2 L L Qi p)e” W ()=
Here
o=V FE+e). 4=V T E—e), e=F;
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the asymptotic expressions for p — co were obtained using (18.13),

In general the amplitudes f, and f, depend not only on E and e but also on
the direction of the vector p. The radius R of the source is assumed to be
sufficiently small so that gR<€ 1. The exponential function in the integrand

may thus be replaced by unity and the dependence on -Pp—drops out, The

functions ® thus become spherically symmetric. Physically this corre-
sponds to a case when the product particle b is formed in the s-state only.

The total yield of the reaction producing the particle b and the bound
state Y, of the pair ¢+ d is equal to the current integrated over the surface
of a large sphere:

ire = {00, 2 (V.05 — B9, @0) = mvg, | fol!, vy, = 2.

m

dQ, is the solid angle element in the direction of the vector p.
Similarly the yield j(k)dk of the reaction in which the momentum of
relative motion of the particles ¢ 4 dlies in the interval dk around kis given by

j (k) dk = dnog |, [ dk, vy = 22

Fu
Integrating over all the directions of the vector k and changing from dk to

de, we find
j(8)ds =\ jim () de,
" . (33.9)

.

4n O i 2m 4
im® =5+ Sdfl e, im (%)*,TX,,,, (r1) Q(ru. 1) T"; w
Here ju(e) is the reaction yield for a given energy e and given quantum
numbers [, m of the relative motion of particles ¢+ 4.
Let us compare the yields of two-particle and three-particle reactions.
To estimate jy, note that the radius of Y, is of the order %E (%
the radial function ¥, (f) normalized to unity is of the order of (ZFT:")

)V' , so that

g
The total reaction yield for Y, is

jy.=A0 ¥ 80(E+80);

(33.10)
Ag =2 b1 E_‘_Sdnth%,pL)r.

m k& | M 4n

Here A, is independent of energy.

Now consider the yield of the three-particle reaction X +a—b+ ¢+ 4d.
The total energy E is first assumed to be less than the energy E, of the
quasistationary pair ¢+ d (the particle Y), so thatthe formation of the
latter is forbidden by energy considerations, All the three particles b, ¢, d
are thus emitted from the source Q independently.

At low energies the entire yield is determined only by the term jy, () de
in {33.9). This is so because %,(r) ~ (kr)*! and for { > 0 the corresponding
terms give a negligible contribution. To estimate jy (€) de note that ¥,.(r)
in the integrand in (33.9) can be approximately replaced by kR (where R is
the radius of the source Q). We thus get

j(e)de:Ao}/a(_E——_z);Tgl; el=2—z_’kr (33.11)
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Here A, is the same constant as in (33.10), and e, is a constant having the
dimension of energy. Numerically it is equal to the energy of a particle of
mass p confined within a volume of radius R. In nuclear physics g ~1MeV
and in elementary particle physics g ~100MeV.

Je)

FIGURE 28,

The energy distribution of particles in a three-particle reaction is
given by (33,11). The function j(e) is plotted by curve 1 in Figure 28.
The total yield of a three-particle reaction is

E
j=Sj(e)de=AoE"e—lE’. (33.11)

[}

We now increase the energy E until it becomes comparable with £, and
the formation of the unstable particle ¥ becomes possible, Let us consider
joo (&) for &= E,. The radial wave function ¥, (r) near the resonance is
highly sensitive to energy and may reach high values. The corresponding
expressions were derived in the preceding (see (27.6) and (27.7)). Inserting
them in (33.9) we obtain

. _ 2 (& \/2E /4 Ve(E —e)
’W(“)ds_mT(E;o) T GCEFTTR T % (33.12)

We see that j, (¢) has a sharp maximum for e~ E, (curve 2 in Figure 28).

The resonance factor is responsible for the marked increase of the reaction

yield at e = E,., The physical reason for this is fairly obvious: at & = E, the

product is a single quasistationary particle ¥, and not two independent

particles ¢ and d, so that we are in fact dealing with a two-particle reaction,
The width Ae around e = E; where the two-particle reaction is dominant

is determined from the condition (we take for simplicity g, = E,)

2Eo T4 _ : _ -‘/ Eol' Eo
—r-m—l, 1.¢e,, Ag = -5 = ﬁ,—f'

Let us calculate the total yield jy of particles ¥ at energy E close to E,.
To this end we integrate (33,12) over e in the "two-particle" region
Ey—Ae<eCE:

£ A
iy= S deioo(e)on]/?lRe[E—(Eo—%l)] . (33.13)
Ey-Ae
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The energy dependence of the yield is determined by a factor first derived

in [184/
Re[ (5 )]V E B T o]

(E—E"[1 + () + -] for E>Eot T,
~ r r
2‘—(5,_5)% for E<E°—T .

The graph of this curve is shown in Figure 29,

J
R-[f-(t;,-g;],é T 5+ Y,
124
brord
£5 =& 4 £
FIGURE 29, FIGURE 30.

We thus have the following picture. Starting with E= —¢g,, a stable
particle Y, may form, The reaction yield & + Y, is specified by (33.10).
The yield as a function of energy is shown in Figure 30. Starting with
E = 0, the three-particle reaction is turned on (see (33.11)). For low E
the three-particle yield is very insignificant (~ E*. Finally for E 2 E,
the formation of the unstable particle Y begins.

§ 34, TRANSITION FROM QUASISTATIONARY
TO STATIONARY STATES

It is highly significant that the energy dependence of the yield of the
unstable particle Y turned to be very close to the energy dependence of
the pure two-particle reaction with ¥, as one of the end products. For
I' > 0 the likeness is virtually complete. Another significant point is
that the absolute yields are also fairly close to one another. To eliminate
the effect of kinetic factors (the final state phase volume), the yields should

be compared at equal distances from the respective thresholds. In this
case we have

yield 0+Y) _ /&
yield @ +Yo) [ :

The analogy between quasistationary and stationary states is very con-
siderable, although at a first glance they are fundamentally different:
stationary states have a discrete spectrum, whereas the quasistationary
states lie in the continuum; the wave functions of the stationary states
are localized in a certain region in space, whereas those of quasistationary
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Ch.5. QUASISTATIONARY STATES

states are "spread'' over the entire space. In the limit as ' — 0, however,
a quasistationary state should go over to a stationary one. Physically this
is obvious. We will now try to go into the formal side of the matter.

The most characteristic feature of wave functions describing quasi-
stationary states is that they have an exceptionally high magnitude inside
the potential range (this has been discussed before, see (27.7)):

R
2 vol'/2
sz(f)df—-'n—(E*_-E—:mé—. (34.1)

(V]

For example, for radium R ~10-12cm, decayenergy E,~10MeV = 10-5erg,
lifetime Ty, == 5000 years (i.e., [~ 1073 erg), For E = E, this formula gives

R
S xidr =~ 10'® cm,
o

To give a rough idea of the staggering value of this integral, it suffices
to mention that in the integral of the square of the modulus of the a-particle
wave function over a volume with a radius of 10 light years

10 light years

x3dr

[}

the dominant contribution is from the central core r<{10-2cm, It is only
when integrating over a sphere with a radius greater than 10%km ~ 1001light

years that the "outer' part of the wave function having the form ]/_,f:sin (kr + 8)

starts making a noticeable contribution,

Since any integral used in practice (even if formally taken between
infinite limits) implies integration inside a much smaller radius (of the
order of interatomic distances, say), it is clear that the wave function
"tails" extending to infinity are ignorable. In this sense, the wave function
of the radium nucleusis actually localized within a volume of 10-1%2cm radius,
although formally it is a continuum function and "fills' the entire space,

Another manifestation of the large value of ¥, in the resonance region
{or, equivalently, of the long lifetime of the quasistationary state) is the
form of the energy spectrum of the particles b+ ¢+ d for E > E,. Formally
¢ + d may have any energy between 0 <e<{E, but in practice, as we have
seen in the previous section (see Figure 28), a considerable fraction of
particles are created almost with the exact energy of relative motion e = E

The analogy between quasistationary and stationary states can be
formulated in more exact terms.

Consider a function f (r) which increases sufficiently fast with increasing
r. We expand it in eigenfunctions X%, (r) of the Sch. Eq. with a potential
which has a quasistationary level (see Figure 18) at & = k.

The expansion coefficients C (k) are given by

c®={Fryn (34.2)
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The contribution from the interval 0 < k< x, to this expansion is

xy oo

X
fcwx,mrar= (1, 0) {1, 01 ¢y driae. (34.3)
. [

Qo []

The main contribution to this integral comes from the region &= &, and
r<R. In this region we may write (see § 27)

()= A @)XD (), (34.4)

where y@ is not very sensitive to energy. Therefore (34.3) can be written
in the form

xy - 0
wn§aw dk§f(r-) X (r)dry = x© () { 102 £ () dra, (34.5)
S0 I IO °

.

where we used the explicit expression for A (k):*

(rwas] s nBt- Lia B (40 |

Since A* (k) has a sharp maximum at E = E,, we approximately have from
(34.8) -

AV () = 8 (k— hy).

In this approximation the expansion of any function

oo o -

0 =, ae= x| xf drs + () x, ar (34.7)

0 X

has a form which as if corresponds to a continuous spectrum beginning
only at k=%, whereas in the interval 0 k<%, there is a single stationary
state %©(r)., (This is an obvious idealization associated with the approximate
character of the formula (34.4), but the corrections become smaller as T
decreases and as the range of the function f (r) shrinks.)

The fact that in various expansions of the form (34.7) quasistationary and
stationary states are entirely equivalent is the formal reason for the great
similarity of these two kinds of states.

§ 35, COLLISION TIME

The treatment of lifetime of quasistationary states has so far been
largely intuitive. We will now go into this question more rigorously. Con-
sider the following problem /185/: a particle of given energy £ is scattered
by a potential V of range R. What is the mean time T (E, q) that the particle
spends inside a sphere of radius r=a, a>»> R?

® As is usual, the functionxﬁ”is normalized by the condition

R
S|x(,,°>|idr.—_1.
[]
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Ch.5, QUASISTATIONARY STATES

We have to devise a mechanism which would function as a clock ticking
off the time that the particle spends inside a sphere of radius r=a. The
following "'clock' mechanism can be proposed: suppose that inside the
sphere r=ga there is a weak homogeneous magnetic field H directed along
the 2z axis, which is zero for r >a, and let the incident particles have a
magnetic moment p, Let further, the incoming particles be polarized
along the x axis (so that their magnetic moments are aligned along the
x axis)., As long as a particle stays outside the sphere r = a, there are
no forces acting on the magnetic moment and its direction does not change.
However, as soon as the particle enters the sphere r { a, where a magnetic
field is present, the magnetic moment will start precessing about the field
vector with a frequency o =¥. (The change of particle energy due to the
interaction —pH is negligible for small H.) The precession will go on as
long as the particle remains inside the sphere r = a. If the time that the
particle spends inside the sphere is 7, the magnetic moment will have
rotated through an angle 8 = Te in the xy plane by the time the particle
emerges from the sphere, Thus, given the precession angle of the magnetic
moment of the scattered particles, we can readily compute the mean time
that the particle spends inside the spherer = a. The results give

T(E.a)=-—3—{%+a—%sin2(ka+b)}. (35.1)

To derive this expression, let us calculate the precession angle 6 of the
magnetic moment.

When a magnetic field is turned on, the Sch, Eq. takes the form (for
simplicity we only consider the case ! = 0 case)

- N - 1 0\ .
% +(k'—V)x=——2h'—:'pHx=—2,:—:'pH (0 _l)x. (35.2)

The term in the right-hand side describes the interaction ~aH; since
by assumption the vector H is directed along the z axis and p inevitably
has the form p=2us, where s is the particle spin vector, * taken equal to 1/,
we have
1 0
pH = 2us.fl = pe,f{ = pH 0—1)°

where ¢, is the Pauli matrix. Since the particle spin s = ,, the wave
function % is to be understood as the column

RN i 3

= (x’ ) »

where y; and %, describe the two states with respective spin projections of
+1/, and -1, on the z axis.

® The spin vector & is the only pseudovector characterizing a particle at rest, The pseudovector p must

therefore be proportional to 8.
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The problem is solved by perturbation theory. The zeroth-approximation

wave function ¥ by assumption describes a state with p directed along the
x axis., This function is

>£“’=X.(')'}71§'( : )n

where % (r) is the solution of the homogeneous equation (35.2), which has

the asymptotic form
1)~ Y =2 sin(kr + 0).

The solution of equation (35.2) is sought in the form

(02 “(l) “(0) xgl)
imims i+ (5.

To first approximation we have

.

o St (im)""' (k’— V) i® = —ZT";' pHY.
Writing separate equations for the two components, we obtain
O+ == — ’;-'%P” Fauo
A (B — V) = —uH V' %y ().

Using Green's function, we write the solution in the form
W= —yP = pH 7z SGk (r,ry) %, () dro~
~2 gL VE V3 L___ pilkre®) Sx: (r)dr =

= p i(kr n
=2ﬁe(k+8)'ﬁ.— rH ka,k(rl)dr;

[

Collecting all the formulas, we obtain the following asymptotic expression
for the solution of equation {35,2): '

A_cog A b )1 ! (kr+&)__1_(l+'ﬁ) hr+5} 35.3
1=x"+x Vﬁ{ﬁ(l)‘ﬁ 75 L) &) (35.3)

The first term in braces describes the incident particles and the second
term describes the scattered particles.

Let us calculate the spin precession angle 8. The mean values of the
spin x and y components are (in calculations we ignore terms ~ B ~ H?)

R B IS

- () 6 o) ve (i ) =
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The absolute value of the precession angle is thus 8= 28 and for the lifetime
we easily find by (15.18)

TEq =g =2 =2{R+a—gsin2ka+ 9},

which was to be proved.

Let us now return to quasistationary states. Inserting expression (27.4)
for the phase in (35.1) and dropping all terms apart from the leading term,
we obtain

AT
T(E) = g=gyTTm" (35.4)

This result confirms our previous conclusion concerning the mean
lifetime of a quasistationary state and the dependence of this lifetime on
the exact particle energy.

Expression (35.1), as we see from its derivation, corresponds to the
average time T that the particle spends inside the sphere r=a, It
would therefore seem that the actual time T that the particle spends in the
region r  ais not a deterministic quantity, and there is in fact a certain
distribution of these times W (7).

It is readily seen, however /186/, that this distribution has the form
of a §-function, W(T)~8(T —7T). The time T is thus a fixed quantity for
a given energy El

Note that this in no way clashes with the uncertainty relation AE.Ai>h .
Indeed, examining the motion of wave packets, we readily conclude that
the Af here is the uncertainty at the exact collision instant, It has no
relation whatsoever to the duration of collision.

§ 36. OTHER TYPES OF LONG-LIVED STATES

It would be wrong to suppose that the resonance states dealt with in this
chapter constitute the only type of relatively long-lived states of a particle
which lie in the continuum. There are at least two other types of states
("virtual level" and "threshold state'') whose lifetimes may considerably
exceed the characteristic time of flight /187/,

Before we can proceed with a discussion of these states, consider
the case of a free particle moving with orbital momentum I = 0 relative to
the origin. According to the general expression (35.1) such a particle
remains inside a sphere of radius R during the time

Tg =%{R-—-2-1;sin2kR}. (36.1)

If R> 1, i.e., AL R, where A is the particle wavelength, the second
term in braces can be dropped in comparison with the first term, and
we obtain the classical result

2
Tfr =Tc1= 5-
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The time T is equal to the time of flight of the particle through the sphere,
and the trajectory passes through the center of the sphere,

The situation radically changes if kR << 1. In this case the wavelength A
is comparable with or greater than the sphere radius, According to
quantum mechanics, a particle may have ! = 0 without actually passing
through the point r = 0: it is sufficient that the particle be at a distance of
the order A from the origin. Therefore the time the particle spends inside
the sphere r = R should be less than the classical time of flight T';. Indeed,
by (36.1) we have for R 1

T, --;;k_'R';:oo. (36.1")

Now suppose that a particle moves in a potential field with a virtual level
(or a real level) with low binding energy. In this case the expressions of
§ 3 are applicable and the acattering phase 8 is obtained from the equation

hcota--._:., (36.2)

where the constant a is the scattering iength. For a <0 there is a virtual
level with energy 5%-, and for a >0 a real level with binding energy 2”—9.;—,.
Solving (36.2) for the phase § and inserting the result in the expression for
lifetime (35.1), we obtain for small 4R (jg}3»R)

I IR 28
e =y At

The dependence of T on particle energy (or more precisely on &) is shown
in Figure 31. We see that the lifetime T vix has a peak at &k ~ l%'l and

near this maximum it is greater than the classical time of flight. This is

the result of the attractive action of the potential. The attractive effect is

particularly pronounced if we compare Tvir Wwith the time Ty, (36.1'), that

a free particle remains inside the sphere r = R. The time ratio

Tyin a\ 4
=] 3 —_—

T ( ) T+ (Rap?

R

may reach very high values for £ —~ 0. Taking R=2.5-10-3c¢m, we obtain
for the triplet neutron-proton interaction (a= 5.4 .10-'¥¢m) a time ratio of

=~ 12; for the singlet interaction {a = ~20-10-13cm) this ratio is even higher
(= 200),
7} " 7 '
7= !
S :
!
= rvirt :
| 1
! A
1

™Y

£

3
(38
X

FIGURE 31, FIGURE 32.
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A "virtual level" is thus not simply a convenient mathematical fiction
but a real physical state of the system in which the particle spends a
considerable length of time inside the potential.

There is another extensive class of relatively long-lived states (''threshold
states'). In Chapter 7 we will show that in case of a reaction

X+aosb+v, (36.3)

the phase 8 of the elastic scattering (X + a — X + a) on approaching the reaction
threshold from below behaves as

d=d+aVYEw—E,
where §, and @ are some constants and Eis the threshold energy. The

phase derivative %2 goes to infinity as E approaches E,. The lifetime

therefore steadily increases on approaching the threshold point from below
(Figure 32).

In principle other kinds of long-lived states are possible, such as states
corresponding to multiple poles of the S-matrix /188 —130/.
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Chapter 6

FUNDAMENTAL PROPERTIES OF
MULTICHANNEL SYSTEMS

§37. THE WAVE FUNCTION OF A
MULTICHANNEL SYSTEM

We have so far dealt with particles in a potential field. The only
physical process;that can be ‘identified with this idealized situation is
" elastic scattering. As we know, any collision problem involving two
particles with an interaction describable by a potential U (r, — ry) can be
reduced to the scattering of a particle off a potential.

Besides the simple case of scattering, we often have to deal with reac-
tions, which convert incoming particlés into different particles. Consider
for example the following situation. We start with ¥ pairs of particles
a+ X (i=1, 2 ..., N) which can transform into one another (whenever this
transformation does not clash with energy conservation):

a‘-+X,Z.’a,+X,-. (37.1)

The total mass of each pair will be denoted M, = my, + mx, and let M; < M, <
ve. < My. In all the cases of physical relevance the interaction between
particles is represented by short-range forces, i.e., it is ignorable for
r> R, where R is the interaction range, Thus, in what follows, reactions
(37.1) are assumed to be confined inside the sphere r <R. We thus arrive
at the following picture. In the outer region (r > R), the most general
wave function of the system should have the form

¥ = SN0 — B 05 ©,= @ (@) (X)), (37.2)

where @ (g) and @ (X;) are the interior wave functions of particles g; and X;
(in general, these may be compound particles), « and B, are some constants,
$7 and ¢ are two independent solutions of the Sch. Eq. for the pair

a; + X; in the outer region r > R (we have assumed that the transitions
between particles are possible only in the interior region; in the outer
region, 4, and X; are coupled only by long-range Coulombic or centrifugal
potentials and the particle motion is thus described by the usual Sch. Eq.)
For simplicity, we consider spinless particles and only states with
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definite /. The wave functions ¢'#’ are henceforth normalized by the following
conditions (only the radial part is considered):

in
po L1 (ke =3) uncharged
{ry+o0 VETRL particles, (37.3)
I .
it~ AL =T rutenttn) charged
frime v Nt particles.

Here u is the relative velocity, & is the wave vector, r:;is the distance
between a; and X;, This normalization corresponds to unit current through
the surface of a large sphere.
What is the form of the wave function
V4 V/4 for various energies? To answer this
+ y VI question, we start with the physical
g ”l": ”2"" /‘{?62 _— requirement of bounded y. Consider
FIGURE 33, the energy range M,* > E> M& (I in
Figure 33). If M is adopted as the
zero point of the energy scale, then
writing Q; = (M; — My)¢® for the difference in the rest energies of the 1st and
the i-th pair, we obtain for the wave vector of the i-th pair in (37.3)

I /(E—~Q,)2p My My
k1= —ML—I, p1=_;71_—,' (37.4)

In interval I (E << @), all k; are imaginary, k; = i|k/|, except & which is
real, Therefore all the functions $'7 with j > 1 increase exponentially

at infinity, 95 (j > 1) fall off exponentially, and $'¥ are everywhere bounded
for r >R,

The boundedness condition at infinity can thus be satisfied only if we take

=0 (i>1). (37.5)
In this case ¥ for r > R should have the form
N
¥ = (@ — By ¢ — 3 B0, (37.8)
=3

i,e., it contains an incoming and an outgoing wave of the pair g, + X, (the
first term) and a sum X which describes the exponentially decaying func-
tions of the other channels., Physically it corresponds to the following case:
for E< Q,, 4 and X, are the only particles which may escape to infinity,
whereas all the other pairs a; + X, (i > 1) cannot exist in the free state since
the energy is insufficient; they are only virtually created in the interior
region and slightly "stick out" into the exterior region (this is described

by the decaying ''tails' in the second term in (37.6)).

The only physical process which may occur at energies E < @, is thus
elastic scattering of the particles g, and X;. In any theory the wave function
of elastic scattering should be completely determinable by the amplitude of
the incident wave, in our case the coefficient ;. Dividing (37.6) by «,, we
write this result in the form

N
¥ = 00— 3 Say0,. (37.7)

=1
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Here Sy = 5—‘- are entirely determined by the Hamiltonian of our multichannel
(4

.8ystem. They are naturally functions of energy. We can find them only if
the- wave function in the interior region is known; matching the wave function
and its derivative at r = R with (37.7), we obtain an equation for S.

By the law of conaervation of the number of particles, the
amplitudes of the incident and the outgoing wave should be equal. This
directly leads to the familiar equality

ISyl =1 for 0< E< Q.

The other coefficients S, are quite arbitrary between certain limits /191/.
We now increase the energy 8o that @ < E < @ (Il in Figure 33). In

this range, ¢ S" with i> 2 is divergent at infinity, whereas the functions

¥%, %, and ¢y are bounded everywhere for r > R. Therefore the bounded-

ness condition for the wave function at infinity now leads to the condition

= q-o for i>2. (37.8)
The amphtudes of the incomingwav\es of the first two channels a; and as can
be selected quite arbitrarily. One independent solution is obtained by
taking, say, o = l,a, =0. The second solution can be defined by o, =0,

ay = 1. The physical meaning of thege solutions is quite clear. The former
(it has the same form .as {37.7)) corresponds to an experiment in which q
and X, collide (an incoming wave is observed in one channel only); their
collision may result in elastic scattering, described by the amplitude Sy,
or in the reaction 4 + X; — gy + X,, described by the amplitude S, in (37.7).
All the other particles with i > 2 may form in the interior region, but they
cannot escape to infinity for lack of energy (one often says that these
channels are closed). Similarly, the solution with o, =0, a; = 1,

N
=PPID— 3 S¥, , (37.8)

=1

describes physical processes which take place when the particles g, and X,
collide; S, determine the interaction between particles in the entire space,
including the interior region.

We thus come to the conclusion that for Q; < E < Q;, where two channels
are open (i.e., where the energy is sufficient for the existence of two
pairs of particles, & + X; and g4, + X,), our system has two independent
wave functions satisfying the appropriate boundary conditions. Clearly,
there are two and only two independent solutions, since if there were more,
we could add them to ¥, and ¥, and thus find several different solutions
with the same amplitudes a; of the wave functions ¢{~. In this case the
process would not be determined by the amplitudes of the incoming waves,
i.e., in other words, the theory would not provide a single-valued descrip-
tion of particle collisions and thus would not be a complete theory. In any
physical theory the number of independent solutions satisfying the boundary
conditions is precisely equal to the number of open channels.

Now proceeding by analogy we can easily guess that further increase
of energy will increase the number of independent solutions: for Qy < E << Q4
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we should have three independent wave functions, say ¥,, ¥,, and a new
function

N
¥y = 90D — 3 S, pd,. (37.9)

=1

For Q, < E< Qs we should have four independent solutions, etc. In general,
for Qm< E < Qma, there are m independent wave functions, which can be
taken in the form
m N
¥ =900, — [21 S, ¥, — . 2 S <m).
= 1

=mi

(37.10)

The first term describes the incident wave of the particles q; + X;, the
second term describes the outgoing waves of the particles a;+ X; (i < m),
whose creation is not forbidden by energy considerations, Finally, the
third term describes the exponentially decaying ''tails" of the particles

ax + Xi (k> m), which are formed virtually in the interior region but cannot
escape to infinity for lack of energy.

The coefficients Sy — the amplitudes of the function $* — are determined
by the particle interaction. The most significant amplitudes are the S; of
the open channels, since in terms of these amplitudes we can express the
scattering and the reaction cross sections (this will be shown in what
follows). These coefficients constitute the so-called scattering matrix §;
Sy (i, i<m) (or S-matrix). It has m rows and m columns, and its order is
thus precisely equal to the number of open channels. As a new channel is
opened, the order of the S-matrix increases by one. The most general
wave function has the form (we write out only the part corresponding to
open channels)

¥=3a¥= /‘Z'"x {“/’1’5') b= 121 Su‘l’ﬁ”d’;} =

/=1
=I§l¢l {app}-)_%ﬁlglaisﬂ}. (37.11)

Instead of writing the wave functions @, of the channels, we will agree to
write ¥ in the form of a column of m numbers:

40— 58,28
7 | 90— 58,800

arpf? — Prpl?

P — Baplt) (37.12)

GM\P:) - 2 Smiat‘pl(‘r:) am'\pf;) - ﬁln“‘l,(l;)

where the first row is the wave function of the particles of the first channel,
the second row describes the motion of particles in the second channel, etc.
Introducing square m X m matrices

¥ 0 ... 0 Su Sia -+ Sim
o= O 9 -er 0 ). 3 | Sn Su oo Sun (37.13)
0 "’fﬁt’ SI:I]. :Sllll e .Smm
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and columns of coefficients before outgoing and incoming waves

oy ﬂl .
a= (%) s=["). (37.14)
i o P ;

we may write the matrix (37.12) in the form
P = $a—$Mf); =235 (37.15)

The relation between the matrices ¢ and §, describing the amplitudes
of incoming and outgoing waves, is entirely determined by the S-matrix,
which thus contains all the information on the interaction properties of our
system. In more precise terms, the situation is as follows. In case of
potential scattering, the S-matrix degenerates to a set of numbers §; = &®,
In this case it hds been proved /115/ that the values of all the scattering
phases § (k) in the entire energy range 0 < & <oco completely describe the
potential, i.e., the coefficients §; (k) actually contain all the information
on system properties. h R

In multichannel systems, however, the analogous theorem has never
been proved, although it seems to be self-evident., We should moreover
stress that actual recovery of the system Hamiltonian from scattering
data involves very substantial difficulties, partly of pure mathematical
nature and partly due to the fact that we must know all the S-matrix
elements at all energies. .Extraction of this information from experimental
data —the so-called phase analysis —requires extremely delicate experiments.

Also note another point. The general expression (37.2) shows that for
r > R there is a total of 2¥ independent solutions corresponding to the 2N
constants a; and f;. Each of these 2N independent solutions can be con-
tinued into the interior region., Consider the energy interval ¢ < E< q,.
Here, as we know, there is only one physically acceptable solution.
The conditions at infinity impose (¥ — 1) constraints (37.5). One constant
o, can be arbitrarily chosen, since it corresponds to the normalization
of the wave function. There thus remain N constraints. These are the
constraints impoged on the wave function in the interior region. Thus,
the number of boundary conditions in the interior region is equal to the
total number of channels: if there is but one channel, this condition
requires that the wave function be bounded at r = 0. In case of N channels,
the wave functions of all the channels should be regular, and this provides
the N conditions in the interior region.

§ 38. CROSS SECTIONS. THE UNITARITY
OF THE S-MATRIX

The S-matrix formalism is treated in considerable detail in /192/,
We will therefore discuss here only the simplest case of spinless particles.
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Ch.6. MULTICHANNEL SYSTEMS

Let the energy be between Qn < £ < Qus1. We consider the processes
taking place when the two particles a; and X; collide. The term corre-
sponding to the particle pair a; + X; in the wave function of this process is

B — 5,00 = (97— 9§) — (S — 1) 9 (38.1)

(in matrix notation, this is the term occupying the j-th row). Here, as in
Chapter 2, the free motion function is enclosed in the first pair of paren-
theses. The amplitude of the scattered wave is S;— 1, and the scattering
cross section is

c”=§(21+ DISy—1P, (38.2)

where the factor k—’,i(2l + 1) is associated with the fact that the plane wave
1]

1 e(ll 7]

Y

normalized to a current of 1 particle/sec -cm? contains an incoming
component $7 Yi» (8, ¢) with amplitude

“‘TI” YR, (38.3)
and the outgoing current is thus

t
on = |G VRRFT S0 — D[ =5 @+ 01 Sy—1 1.
The above expression for the scattering cross section has the same form as
for potential scattering. The only difference is that for multichannel
systems the matrix elements |S;| 1 so that the scattering phases are
complex,

Let us now compute the cross section oy of the reaction X, (a,a) X.(i=7).
For unit current (1 particle/sec -cm?) of colliding particles, the outgoing
current of the pairs 4,4 X; through a sphere of large radius is equal by definition
to the creation cross section of these particles,

Oy = l-;‘l— l.l.l y::(21+ ]) S/[ |’=k_’:(21 + l)IS” I'. (3804)
/

Expressions (38.2) and (38.4) can be combined, writing the cross section
of the reaction X; (a,a)X, in the form

c/1=:7(21+1)|8”—6,,|’, (38.5)

where §;, is the Kronecker delta.

The above expressions show that the cross sections of all the processes
are described in terms of the S-matrix elements. A study of the general
properties of the S-matrix is therefore of fundamental importance.

We will first show that the elements of the S-matrix are not independent:
they satisfy certain constraints. It is clear from physical considerations
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that in any physical process the total number of particles should be conserved.
In other words, whatever the actual superposition of the wave functions

Y = T ¥, (38.8)
the sum of the particle curignts converging at the origin should be equal to

the sum of the outgoing currents,
' The total incoming current according to (87.11) and (37.12) is

IH -’g‘]alr,

and the total outgoing current (see (37.11)) is

1= B350 | = F svasia,

These currents should be equal for any values of the constants «;, Equating
the expressions in = and ¥ Ll for the same products aa;, we obtain the
constraints imposed on the ! ~nmrix ‘

12‘8)182. -t o (38.7)

A matrix whose elements Sy satisfy (38;7) is called a unitary matrix,
Thus, the law of particle number conservation leads to the unitarity
of the S-matrix, In matrix form, this condition is written ag

$8=1,1i.e, =54 (38.8)
where §* is the Hermitian conjugate, i.e., a matrix obtained from § by
taking the complex conjugate of the transpose. In the simplest case of a

one-channel system, (38.8) reduces to the well-known condition

S*S =1,

§ 39. TIME REVERSAL. THE SYMMETRY
OF THE S-MATRIX

The laws of classical mechanics allow time reversal, This statement

should be interpreted in the following way. Consider a system of ¥
particles whose motion is described by the coordinates and the velocities

£ (0 v (0. (39.1)

At some time ¢ = T we arrest the motion of all the particles and make them
move in the opposite direction with the velocities

—'Ulm.
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If this is done, the system will go through a reverse sequence of all the
stages of its previous evolution, i.e., the coordinates and the velocities
for t > T will be given by

2 T+D=xsT—1; (T + 1) =—0,(T— 7). (39.2)

To prove this proposition, it suffices to consider the equations of motion,
They have the form
N
do
m,—ﬂ-l-= 2 F(x,__x/), (39.3)
=1
where F are the interparticle forces. Here we consider the simplest
case of forces which only depend on the relative position of the particles.
If (39.1) is a solution of these equations, direct substitution shows that the
functions

0, ()= —v (—); x;(0) =% (—f) (39.4)

are also solutions of the equations of motion (39.3). This proves the
reversibility of time in classical mechanics.

In quantum mechanics the problem of time reversal is formulated as
follows /193/. A wave function ¥ (x, f) of an evolving process should be
found from the equation

wREY _ Ay (r, ), (39.5)

where x is the set of all the coordinates describing the system. At a time
t the probability density and the mean momentum are

w0 =% O
P =¥ (. 1) po(x .

The principle of time reversibility states that, in parallel with any
process described by the function ¥ (x, £}, there must exist a reverse
process with the wave function rev(x, ) such that

(39.6)

Weev(%, ) =w (X, —1), Peev(t) = — p (—1). (39.7)

Let us find the form of $w.v. Substituting —¢for ¢ in (39.5) we form the
complex conjugate of the resulting equation. Equation (39.5) thus takes
the form

iha_‘p._(g?'_—_t?=ﬂ°xp'(x,—t), (39.8)

so that if A* = H,
iprev(xr t) =\P' (x! ‘t) (39.9)

is a solution of the starting Sch. Eq. (39.5). This new solution describes
the reverse process. Indeed

Weel X, 0)= Y* (x, = = w (x, —1),
. . R . (39,10)
P =0 e — ) " (v —tydx = — {4 (r, — 1) Py (v, —1) dx] =—p(—).
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Here we made use of the fact that by definition p = —ik a—i, so that p*=—p,

and the mean p(f) is real. :

Thus, for every process ¥ (x, f) there is a corresponding reverse
process with the wave function ¥ (#, /). A necessary condition for the
existence of reverse process is that the Hamiltonian be real:

A=A (39.11)

For a system of N spinless particles with the usual potential interaction
forces between them thil condition is always satisfied, since the total
Hamiltonian

ﬂ.-— EWV‘ + 2 Vu(n—"n)

l-’.
is real. :
. Some compucgqonl d.evplop in the case of charged particles in a
.magnetlc field. . Tbo kinatic energy operator in this case is

e gm(p— + 4

where A is the vector potential of the field satiafying the usual condition
div 4 = 0, For ! we thus have

P=F i av) 4
Clearly, in distinction from the case of an electric field, the reversal of
the direction of particle motion must be accompanied by a reversal of the
sign of the magnetic field or, equivalently, a reversal of the sign of the
vector potential, The time reversal operation should therefore contain
complex conjugation and sign reversal of 4 (or H), We see from the
expression for ? that the Hamiltonian is invariant under this operation:

A (A) = H* (—A). (39.11")

For a wave function ¥ (f) which describes a time-inverted process we
obtain as before

'Prev(t) = ‘p‘ (_t)

Further complications arise when dealing with particles which have
spin. Consider a particle with spin of 1/,. Its wave function is described
by a column matrix

i (x, t))

2 0= (Grier )

where the upper and the lower component correspond to the states with
s =1, and 5, = - 1,, respectively. The mean spin components at point x
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at time ¢ are
- NCRIVE -
S = VS = - (91) (1 0) (¢:)= < (ba63 + Vi),
Sy = *s,p = 5 (Yida — Piva),
S:= V5= (9P — %),

Hence we conclude that by passing to a complex conjugate function
L XC A g M CA
we end up with a different spin state:
Sx—> Sy, Sy— —Sy S:—>5a.

On the other hand, when the direction of particle motion is reversed, the
angular momentum should change its sign. This is a general property of
any angular momentum vector, the spin vector included. This condition
is met by the function

¢ A, ¢ . ""P;(x' —t)
\prev(xv )'- oY (xl —f)=i \p;(x, —t) .
For the mean values of the various spin projections in this state we obtain

s, () =—s5,(—1t); 5, () =—s,(—1); s, () =—s,(—1)

The function $ also satisfies the other reversibility conditions:
the probability density at a point x

Wrev(%, ) = Wrev(t, 0"Vl ) = (0 + ) = © (x, —);
the mean momentum
Pre(t) = (x4 (6 ) Do) =
= S dx[%(X,—t)b\P;(x,—t) + ¢l(x,_t),‘,¢;(x’ —Hl=—p(- ).

The function

Yrev(x, 8 = G p* (x, —0)

thus has all the properties required of the wave function describing a time-
reversed process. From the equation for ¢ (x, 1),

. Lt

in D _ fy(r, 1),
we obtain an equation for ¥ :

f)  a e
lha_‘PL‘;t(f__) =3 dyH cy‘prev (xr t)'
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Therefore, in order for Y. to be a solution of the Sch. Eq., or in other
words for the reverse process to exist, we must have

B (A=A (— A3, ‘ (39.11")

(if there is an external magnetic field, the field sign should be reversed
when the complex conjugate of the Hamiltonian is taken).

If A does not include the particle spin operator, §,and A commute:
in this case the conditions of time reversibility reduce again to (39.11)
and (39.11'). If A is dependent on spin, it requires special treatment.

It is readily seen that an interaction of the form oM and ¢/, where H is
the magnetic field and #is the orbital momentum operator, satisfies
condition (39.11"),

This condition ig not met by terms of the form ¢E, where E is an
electric field, * The presence of these terms in the Hamiltonian indicates
that the particle has an electric dipole moment d ~¢. Thus, as Landau
first pointed out /194/, an immediate consequence of time reversibility
is that a stable particle cannot have an electric dipole moment, This was
the state of things up to 1964, when we had no experimental indications (or
theoretical pointers) even of a remote possibility of nonreversibility of
time, Thus, the discovery in 1964 of a weak breakdown of time reversibility
in kaon decay experiments [94/ came as a complete surprise to the
scientific world. Since there is no exactinvariance under time reversal,
a stable particle with spin (e.g., a proton or an electron) in general should
have a smail electric dipole moment,

After this brief digression, we proceed to consider the constraints
imposed on the S-matrix by time reversal. The ordinary Sch. Eq. can be
written in the form

Hp (x) = E (x). (39.12)

Since the Hamiltonian is real, taking the complex conjugate we find that,

in case of real energy, v¢*(x) is also a solution of equation (39.12). (We

are dealing with spinless uncharged particles.) This consequence of the

time reversal principle reveals some important properties of the S-matrix.
The asymptotic expression for the most general wave function of a

multichannel system in matrix notation canbe written in the form (see (37.15))

G e [ — 8], (39.13)
On account of time reversibility, the complex conjugate function
e [ — 08 (39.14)

is also a wave function of our system, i.e., apart from a constant factor,
it should coincide with ¥. In other words, the relation between the ampli-
tudes of the incoming and outgoing waves should be the same for both ¥*
and ¥. Right-multiplying by (—S™)* the expression in brackets in (39.14),
we obtain

G — P 31y, (39.13")

® These terms may arise only in a theory where parity is not conserved, since E is a polar and o an axial

vector, so that 6E changes sign on inversion.
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The relation between the amplitudes will be the same as in (39.13) if @ H* =
= 8. On the other hand, we know from (38.8) that §'=38*. Therefore,
recalling the definition of the matrix 8%, we finally obtain

Gy =3y =3.=38, (39.15)

where & is the transpose of §(S;— Sx). Since by (39.15) the S -matrix
is not affected by transposition, it is a symmetric matrix (with S; = S;),
so that

34 =8=8 (39.16)

Time reversibility thus leads to a symmetrical scattering matrix,

In some problems, the asymptotic expression of the wave function is
conveniently represented not as a superposition of incoming and outgoing
waves \pﬁi) but in the form of standing waves

1 1
¢ = o (00 + ) ~ 7% (br — ), (39.17)

1 1 . in
‘P?) = (\Pfﬁ —_ \Pﬁ')) ~_V___v_l. sin (kir —_ T)'

To change over from a system of wave functions (37.13) to a system of
standing-wave functions, we introduce the diagonal matrices

oY = % G+ ¢ and ¢ = _ii‘_ @ — . (39.17")

We can now express $@® in terms of ¢® and ¢® and insert the resulting
expression in the general wave function (39.13). We find

¥ = (¢ (1 —8) —o™i(l + 8)ja = [¢®— §*R] 7. (39.18)
where
K=i(1+8 -8, (39.19)

and ¥ is a new matrix of arbitrary coefficients related to the amplitude
matrix a of the incoming waves by the equality

¢ =(1—2J8)a. (39.20)

K is generally called the K-matrix and in our standing-wave represen-
tation it replaces the 3-matrix derived in the representation of incoming
and outgoing waves, The K-matrix has a number of important properties
which follow from the unitarity and symmetry of the S-matrix. To
derive these properties, we right-multiply (39.19) by (1 — 8) and take the
Hermitian conjugates of the two sides. This gives

(1 =88R = (1 + &) (—i). (39.21)
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Further seeing that 8* = 81, we left-multiply this equality by & and find

(—1 4+ S) l‘% = (14 3) (—1i), (39.‘22)
ie., Re=i(0+ 80 -8 =K

R is thus a Hermitian matrix.
As the S-matrix is symmetric, we ha.ve

=8 (39.23)
Taking the compiex conjugate of (39.21) and using (39.22), (39.23), we obtain
W=§R»=1(+8),

i.e.,
K=R"=R. (39.24)
- In other words, ‘the l(-mati‘ix isa ‘real and symmetric matrix, It is this

simple form of the particle number conservation and the time reversxbility
conditions that makes the standing-wave representation particularly attractive.

Any real symmetnc m x m matrix has Z ('"'H) independent real matrix

elements, The K -matrix is determined by the interaction between the
particles, We tay thérefore say that the form of the wave function outside
the interaction range depends on the particular interaction only through
"L'"z'"—” real parameters. These parameters are naturally functions of
energy.

If we use the standing-wave representation, these parameters are the
m(m+ Y independent matrix elements of the K-matrix. On passing to the
representanon of incoming and outgoing waves, the number of independent

m{m+41)
2

parameters remains as before, since the S-matrix is uniquely

expressible in terms of the K-matrix. Indeed, from {39.19) we have
=GR+ 1)gRk—1). (39.25)

Finally note that there are certain restrictions on the energy dependence
of the S -matrix elements /191/. We will not give here the corresponding
expressions, since they do not have any use,.

§ 40. SOME ANALYTICAL PROPERTIES OF
THE S-MATRIX

Consider a multichannel system a;+ X;(i=1,2,..., N). Let %4 be the
wave vector of the light pair g, +X;, x:]|the values of & for which the i-th
channel is open:
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In the complex &, plane, the points %, X, ..., x, correspond to branching
points of the S-matrix elements. Indeed, the elements §; of the scattering
matrix depend on the wave vectors & of the particles in all the channels,

and not only on A :
/2m; A%
k= ﬁ_g(E—Ql)y E=2_rr111'

This is most apparent from the fact that the elements S, are found by
matching the "interior' with the exterior functions, whereas the latter
($®) contain & and not the total energy.

Thus, in order to make S; a single-valued function of the complex
variable k,, we have to introduce cuts in the k, plane; these cuts will be
drawn as shown in Figure 34. In the interval (Ox), as we know (see § 37),
there is only one solution which is regular in the entire space, in the
interval (x;, %5) there are two regular solutions, in (x, x,) there are three
regular solutions, etc.

Take one of the various physically meaningful solutions over the interval
(%1, %) (let j<< i)

N
W= O — 2 Sjn (ks) Y P ~
n=1

!

N
T = 2 S (k37
i

v,

~®; e*nng, (40.1)

n=1 n

and continue it analytically into the upper halfplane. Since the cuts have
1
been made, this continuation is single-valued. The function ${ ~ Vo, &*nn

in the upper k, halfplane falls off exponentially for r — o, Hence we
conclude that none of the §-matrix
elements may have poles in the upper
A @ k, halfplane (except the poles on the
imaginary axis). Indeed, let S, have
a pole at a point 4. Then divide (40.1)
0 by Si». The resulting function is clearly
regular everywhere., In the limit as

I A w1 I ky — k,, this function will reduce to
N
2 s—f‘ﬂ’,‘:"pn which by assumption is
nmy 8 F 17
regular for all r- Thus, zm’ is an
1
FIGURE 34. energy eigenvalue in this case. This

is, however, impossible for &k, which

do not lie on the imaginary axis, since
otherwise the energy eigenvalue would be a complex number, at variance
with the Hermitian property of the Hamiltonian. As we see from this
argument, the above theorem can be extended to all the elements of the

S -matrix without exception.
2,3

Now suppose that there is a bound state with energy E, = — ;’:° in our
o

system, It is readily seen [/195/ that at the point &, = ik, all the elements
S; have a pole, i.e., for k— ik, they all behave as

C
Sy = K_—_”‘.T; Cy; = const. (40.2)
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Indeed, ¥ in the upper k, halfplane diverges exponentially for large r.
Hence, this term should drop out for k, = ik, when the function (40.1)

is analytically continued to the imaginary axis /. This is possible,
however, only if at least one of the elements S, goes to infinity at this
point, since then the entire function ¥ can be divided by this singular

element S;, and the term -g‘—-ﬁ;) will vanish for &, = ik,. On the other hand,
n

it is clear that if at least one of the elements of the §-matrix goés to infinity,
all the other elements of the S-matrix go to infinity in the same way.
Indeed, the wave function of a bound state ¥, should have the asymptotic form

Y .
Y."— %A,‘"ﬂl'.@l’ 'k"l = v Z%Qn'l' El))' (40.3)

where the sum is taken over all the channels, Since particles from different
channels may in principle transform to particles of all other channels, none
of the A, may be zero. Therefore only the termyf’should drop out from the
expression for the wave function when (40.1}.with any j is analytically
continued to the point ik &n&'in this case ¥/~¥,: const. This is possible
only if all the elements' Sy, have the form(40.2) near the point ik,. It is
furthermore clear that for all j and a we should have

C="bA,V0n. (40.4)

Otherwise, using different functions ¥y we would obtain different expressions
for the wave function ¥, of the bound state.

From (40.2) and (40.4) it immediately follows that the determinant
assembled from the residues of the S-matrix elements and all its minors
vanish at the point corresponding to a bound state.

As regards the poles of S; in the lower & halfplane, they correspond
to quasistationary states of the system, asinthe case ofthe ordinary Sch. Eq.

Various analytical properties of the §-matrix are treated in /196/.

§ 41. CONSTRAINTS ON THE RESIDUES OF THE
S-MATRIX ELEMENTS

In previous chapters we analyzed the properties of S = ¢*® and set an
upper bound for the residue of § at a point corresponding to a bound state.
Similar theorems can be derived for multichannel systems.

First note that the law of particle number conservation for multichannel
systems is a natural generalization of the single -channel formula:

N N
%‘Sdr(z}l [, 1) = ?ds (/=1 2‘—:1, W}V, — ), (41.1)

where S is the outer surface of the volume V, 4, is the wave function of
particles in the j-th channel, m; is the reduced mass of the particles
in the j-th channel,
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In matrix notation, the total wave function of the system is written as

¥
v | ") and T —wpv.. W),
Py

and expression (41.1) takes the form

% Sdr‘i’*‘?’ = § as 3 ¥ ivE— (v M),
s
where
mt 0
™
o my

If the particles in all the channels are spinless, momentum conservation
considerations indicate that transitions between channels

s+ Xi2a+X;

are allowed only if the particles in the left- and the right-hand sides are
in states with the same /. For simplicity, we will consider this case only.
Suppose that for a given [ our multichannel system has a bound state
with energy
A%}
Eo='—m; kio = iky

2my

and normalized wave function

‘pl A,e—lkul r

W |, e

¥, = (41.2)

~1kpolr
'll)N ANB No

where |k, are the absolute values of the wave vectors of the particles in
the i-th channel, corresponding to energy E,.
If the k& are real, the wave functions have the form

N
¥, = (@nf— 2 S0 ¥ im. (41.3)
=1

Using (41.1) —(41.3), we derive in the same way as in Chapter 3 the
expression
(=M% A by ()4 4
iy 7= el e (41.4)
which relates the residue of a diagonal element of the S-matrix to the
normalization constant A; of the bound-state wave function. Recalling
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expression (40.4) of the previous section, we find
b.l F=3 (__l)hliA;u—:fo N (41.5)

where v, is the velocity corresponding to wave vector k.
We thus arrive at a general formula

C
S”(k‘)"'F:"lE' , ’ {41.8)
ey~ Ty

where the residue Cy is given by

Cu=i(—1y"]/ "o p.4;, (41.7)
o %0

This is a generalization of the corresponding relation for a single-
channel system (§ 15) and it sets an upper bound for the residues Cy.

For simplicity, let-us consider the case [ = 0,

If the interaction range R is zero, f.e,, a point interaction, expreasion
(41.2) for the wave function of the bound state is applicable everywhere
except at the pomt r=0, The normalizatmn conditxon is

g .

,_ZIM'FWT'*' (41.8)
If all A, + 0, we clearly have
A << 2| Rl (41.9)
and
Cui<2|-2h }f—',’,'__’f—’ (41.10)

Note that in distinction from a single-channel system, where for R = 0
we have the equality

[Cl = 2|k

(41.9) is a strict inequality. The reason for this is the following: in a
single-channel system the wave function comprises terms which correspond
only to one pair of particles. In a multichannel system, on the other hand,
¥, incorporates the particles of all the channels, so that each channel
accounts for a relatively small fraction of the total wave function, a fact
appropriately reflected in (41.9),

Note that scattering and reaction data, which in principle should
give all the S;, can be used to find the residues C, from (41.6), (41.7) by
analytical continuation of Sy in the complex plane. Once the residues have
been found, we can determine the normalization constants 4;. Thus,
complete information on the continuum enables us to reconstruct the
structure of the bound state.
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If the interaction range R is finite, expression (41.2) is applicable

only for r >R. From the normalization condition we obtain, along the
same lines as in § 15, that

N
i 2lRuIR
E’Ail,me IR 1, (41.11)

and inequalities (41.9), (41.10) are weakened:

| AP < 2} kig| '"01R, (41.12)
[Cyl< 2 ":‘}o”/o Vnhzlm,e(lk,-olﬂk,ol)R. (41_13)
10

The principal consequence of this is that comparison of the experimental
values of C, with inequalities (41,10), {(41.13) will in principle give an
estimate of the interaction range.

§ 42. EXPRESSION FOR THE S-MATRIX AND ITS
RELATION TO THE R -MATRIX

In the general case of an N-channel system, the §-matrix depends
on %N(N+ 1) parameters. As a rule, we know absolutely nothing about

these parameters, since particle interactions have been very little studied.
We know, however, that these interactions are generally strong and of very
short range. A reaction is therefore generally considered as developing

in three distinct stages: 1) the particles are on collision courses, but as
long as the distance between them is less than the reaction radius R, they
do not interact (Coulomb forces are ignored at this conjunction); 2) for

r < R the interaction is turned on instantaneously and a so-called intermediate
gsystem is formed; 3) finally the intermediate system disintegrates and as
soon as the distance between the product particles becomes greater than R,
the interaction is instantaneously turned off.

Using this schematic picture, we can obtain fairly powerful theorems
on the behavior of scattering and reaction cross sections. To this end,
however, we should express the S-matrix elements in terms of the wave
functions and their derivatives in the interior region r <<R. This problem
was first solved by Kapur and Peierls in 1938 /182/ and by an alternative
technique by Wigner and Eisenbud in 1947 /187/. Recently Lane and
Thomas [192/ published a very detailed review on this subject.

The underlying idea is the following. Consider a system with N open
channels a; + X;. Outside the reaction radius, i.e., for r >R, transitions
between channels X; + a;— X; + a; are forbidden from the very definition of
reaction radius,

The most general wave function for r > R is written in matrix form as
R 0

¥

(7 —$98) v = (42.1)

0 R
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\p;:') 0 Su Sn s e Vi -
) Su Su. ..
S | Bk 1, (42.1)
o ‘\pﬁ’ Sww / v

where the column matrix v comprises arbitrary numbers v, and 175') ¥ are
the wave functions descnbing the incoming and outgoing particles in the i-th
channel,

Inside the reaction range r <R, there are also N regular solutions. Let
their values and the values of their derivatives forr = R be

o Oy LA
¥ - “” ¥ = °:" (i=1,2,...,N). (42.2)
v W

The most general solution for r < R can be written as

Oy GRey .. 0Nz [

N .
tim Bawe wolmomin ) an(n) s
fmay
(VA YV FY7Y) aw

The matrix a is again quite arbitrary. We write an analogous expression
for the derivative in the form
N

?a= D a¥. (42.4)

s}

Matching the wave functions and their derivatives at the boundary, we
obtain two matrix equations

¥a = (7 —98)3, } (42.5)
Fam (37— §78)5
Elementary solution gives
3 = RA™ — )2 (R — ), (42.6)
where .Ql is a square matrix,
Ri=¥¥, (42.7)

The first part of the problem is thus completed: we have established a
relation among the S-matrix and the wave function in the interior region,
It now remains to find the properties of the matrix &,.

We know that the S-matrix is unitary and symmetric,

§1= S*; =8
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Ch.6., MULTICHANNEL SYSTEMS

Using these relations, we can now establish the properties of the new
matrix R;,. Elementary calculations show that the unitarity of the S-matrix
leads to the relation

RM =R, (42.8)

P . .
where M is a diagonal square mass matrix

my 0
=l ™}
0 my
and m; is the reduced mass of the particles in the i-th channel. The second
property of the §-matrix — its symmetry — indicates that R, is a real matrix:

R, = R, (42.8')
At this stage we can conveniently introduce a new matrix R:

R =1§1M.

From the properties of R, we see that the new matrix R is real and
Hermitian, In other words, its elements are real and symmetric under
index transposition:

Ru = Rix = Ru. (42.9)

This means that the R-matrix is entirely determined byﬂ%)real parameters.

In a two-channel system, say, we have three independent parameters:

Rll RH
R= (Ru R,,)‘

The S-matrix is thus also expressed in terms of three parameters only, but
surely we know this already.

As an example, consider a two-channel system. Expression (42.6) in
this case gives the following expressions for the §-matrix elements:

Su= D_—”:lmi {(Rmp{—) —my ‘b{-)') (Ras ) — my 1|>‘,*”) —_ R{,\p({)\p;")},

21 R
Su=Spy=—2Rs,

(42.10)
S1s = e (Ru¥E — mupf™) (Ru¥” — ma 97) — REw047),

D = o ((Ruw” — mu9{”) (Rutl” — mawl™) — Riw{"%").

For a system with more than two channels, the expressions for the
elements of the S-matrix are more cumbersome, but the fundamental
structure is the same., They are in the form of a fraction where both
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§43. MEAN LIFETIME OF CONTINUUM STATES

the numerator and the denominator are polynomials of N -th degree (N being
the number of channels) of the exterior wave functions ¢{*) and their
derivatives at r = R,

§ 43. MEAN LIFETIME OF CONTINUUM STATES

In § 35 we found the mean lifetime of a scattered particle inside a sphere
of radius a where the entire potential is concentrated. We will now solve
the corresponding problem for a multichannel system /200/.

Consider a system with N channels a;+ X;(i = 1,.. ., N), some of which
may be closed at the glven energy E, Further consider one of the ener-
getically allowed processes =~ .

1

m+X¢—»¢,+X,. (43.1)

We will now ﬂnd the méan lifetime Tu for this process during which the
particles of the system remain inside a sphere of radiusr = 4, The radius
R of the region where interchannel transitions (43.1) take place is assumed
to be less than a,

We use the same timing technique a8 in § 35 for measuring T;: outside
the spere r = g there is a weak homogeneous magnetic field H directed along
the z axis, and all the particles 4;{i = 1, ..., N) have a magnetic moment

= us (which is equal for all {). The colliding particles are assumed to be
polarized in the direction of the x axis. Inside the interaction range the
colliding particles a;+ X; may change to any other pair as + X;, which in
its turn may transform to the next pair a; +X;, etc. These transitions,
however, do not affect our ''clock' (i.e., the precession of the magnetic
moment around the vector H), since by assumption all g, have the same
magnetic moment g. The lifetime T, can therefore be found as

r=2,
(i)

where 0 is the angle between the vector p and the r axis, which specifies
the direction of the outgoing particle, and o = ~— 2“” is the spin precession

frequency in a magnetic field.

To calculate 0, note the following. The S-matrix of the process (43.1)
contains two kinds of quantities (see (42.8)): (a) theelements of the R-matrix,
which depend only on particle interactions inside the reaction radius, and
(b} functions ¥ and $#” which depend only on the behavior of particles in
the various channels outside the reaction radius (note that \p‘i’are normalized
by their asymptotic behavior

9;

gt )

In what follows we assume that the sphere of radius r = g with the
magnetic field inside it is the boundary separating between the interior
and the exterior region,
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Ch. 6. MULTICHANNEL SYSTEMS

Let the S-matrix without the magnetic field be known:*
§ = @GP —RFT GO — R, (43.2)

Turning on a magnetic field inside the sphere r = a is equivalent to changing
the energy of the particles inside that sphere. For particles with spins
aligned along H (s; = Y/s) the energy E is incremented to E+uH, and for
particles with spins directed against the field (s, = — /) the energy is

(E —pH), The R -matrix elements change accordingly:

dR
Riy—> Ru+uH dEu for s,=i%.

At the same time the ""exterior' functions & are not affected by the intro-
duction of a magnetic field at r<<a. The S-matrix of the states with
sy = + Y thus takes the form

Sil‘”g—i [m (kiquk) <+),] %
x[\p") (R:tp.l'ldk) "'], (43.3)

where -:—E is the ordinary derivative with respect to energy, and 595- indicates

that the differentiation is done assuming all the "interior' quantities to be
constant. .
Since the R-matrix can be expressed in terms of §, $®, and ¢’ using

(43.2), == is also expressible in terms of these quantities. Simple calcu-
lations give

83 dS 1o PR = (=)

8 =+ % 69 *S—S(w‘ ) —

-7 B—¥° (w) D gAY GO @499 @), (43.4)
where £ is a diagonal matrix of wave vectors, and ¢®, ¢ should be
calculated on the sphere r =a.

The wave function of the colliding particles a; + X, (with p directed
along the x axis) is

()

The wave function of the product particles a; + X; is clearly

as, 8,
o 1 S+ wH 5- o 1 l+"H‘1—55 (43.5)
¥ = =8¢} —= .
vz Si/—pH GS,, vz l—p,Hicfﬂ
Sy dE

The angle between g and the x axis to which this spin function corresponds is

0= 2uH Im(S‘ °:g)

® The definition of the R-matrix used here is somewhat different from that introduced in §42 /192/.
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§43. MEAN LIFETIME OF CONTINUUM STATES

The mean lifetime Ty is therefore [186/*

1 531/
T,,nhlm (EI-I‘-E-). ] (43.6)
In the following we will require an explicit expression for the T; of a
two-channel system (! = 0), The S-matrix can always be written in the form

3= (:‘;;.‘_M 3““‘:‘“") (43.7)

(this matrix is symmetric and unitary if « and p are real and o* + §* = 1),
Using (43.4) and (43.6), we find

Ty = _E. Im {l (% + a) 4 (aua,m,)_ %. esittons)) 4 l%v’.i;‘m"m"}v

r‘.=n{n(o,+a.)+a(ﬁ_ﬁ) (43.8)

- m‘?*w+°ﬂ~mﬁin 2(k-¢+°-)}

Here A&, v, and &, o are the wave vectors and the velocities of particles in
the first and the second channel, respectively "The above expression for
Ty is applicable even in the energy range when the second channel is closed.

das d
L -——”—) where = is the total derivative, was obtained in some sources,
S, @E dE
e.g., /242/. In general this result is incorrect /198/, as it only corresponds to the quasiclassical approxi-
mation (but even not always so),

* A different result Ty = Alm (
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Chapter 7

THRESHOLD EFFECTS

Experiments show that all interactions between particles (except the
Coulomb interaction) are strong but relatively short-range. This property
leads to a number of important predictions concerning the cross sections
of various processes. This problem was studied in the greatest detail by
Wigner in 1947 /198/., He started with a multichannel system

a; -+ X,—»a,+X,

and showed that from the one assumption of short-range character of
the nuclear forces we can compute

(a) the energy dependence of the cross sections for elastic scattering
X; (@, a)X; at low energies of incident particles;

(b) the cross sections of the reactions X, (a, a)X, at low energies of
incoming and outgoing particles.

These results were considerably extended in recent years, when the
general solution was obtained for the energy dependence of the cross section
of a process X;(a, a) X;near the threshold of any other process X; (a4, a:) X:.

§ 44. ENERGY DEPENDENCE OF THE ELASTIC
SCATTERING CROSS SECTION AT LOW ENERGIES

Let the interaction V between the particles a and X have a finite range R.

Consider a state in which @ and X have a definite orbital momentum /{;
further let r > R. The Sch. Eq. for the radial part of the wave function
multiplied by 7, % (r) = R, (r), for r >R has the form (we are dealing with
neutral particles at this stage)

" Ig4+1
K+ (B — D)y, <o, (44.1)

r

2

where &k = ;"—, is the wave vector of the relative motion of particles a and

X, E is their energy in the center-of-mass system, and m is the reduced
mass. The most general expression for % in this region can be written
in the form

g () = Ar (R) 19} (kr) — Sy (k) i (kr)], (44.2)
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§44. LOW-ENERGY SCATTERING CROSS SECTIONS

where A and S are certain constants dependent on k(or E) and ${¥) are
two solutions which at infinity have the asymptotic form of incoming and
outgoing waves:

¥4 (k) = (FE )I(—l) ey RO 28, (0],

(44.3)

=i
W) ~ e -5,

Here Jigwy are the ordinary Bessel functions. Functions normalized in
this way describe the incident (~) and the outgoing (+) wave correspondmg
to unit current through any large sphere.

For r = R the solution {44.2) should be matched continuously with the
regular solution for r < R,  In the interior region the particle energy E
enters the equntion of motion only as a sum (E+ V) with the strong (large
in magnitude) nuclear interaction. The interior wave function ¥® will
therefore hardly change with energy (which is small compared to V).

To first apmédmtion we may thus take that

wl

is independent of E ‘
The matching condition takes the form

v — s ,

v sef =z - const. (44.4)

Seeing that for k— 0

£ am \AC@=D | ()
1’5 (kf)~(T') [Wi (2[+1)”} (44.5)

we find

¥ —ef”

Si— =

1~ (RR™,

reR

whence for the elastic scattering cross section as a function of energy
we obtain

=@+ )F|S—1p ~k"~E" (44.86)

i.e., for small E the neutral particles are mainly scattered in the state
with zero orbital momentum. The particle cross sections with /=0
vanish for k— 0, Physically this result is quite obvious; it describes
the repulsive action of the centrifugal barrier.

If a and X are electrically charged particles with charges ¢ and &,
respectively, equation (44.1) acquires a Coulomb term

. I{4-1 2
¥+ [k-—$_%%] Ay =0. (44.7)

r
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Ch.7. THRESHOLD EFFECTS

The general solution of this equation for r >R is again written in the form
(44.2); ¢, however, is now expressible in terms of the Coulomb functions:

W) = S (G, 0) £ 1F1 (0, )] ~ (44.8)
~__1_etl(lu—"71—nlnaknnl)
V‘; 1

where 4= e—;%’, p=kr, G, and F,; are the irregular and the regular Coulomb

functions, respectively, and 7, is the Coulomb phase. The general solution
for r>R is written as

O, = A (b2 — ) + (1 — S) M. (44.9)

If A; is taken equal to 4 V7 (20 + 1)i¥™, the first term will coincide with the

coefficient before P, (cos8) in the exact wave function describing Coulomb
scattering. We know from scattering theory in a Coulomb field (see § 10)
that this function contains the scattered wave (which should be multiplied
by P;(cos 8) in order to obtain the scattering amplitude in a state with
momentum {):

2%/:6«”—" Ingkn) (9f 4 1) (™ — 1), (44.10)

The second term in (44.9) corresponds to the additional nuclear scattering,
and it must be added to (44.10) if we are to obtain the total scattered wave.
For the total scattering amplitude in a state with momentum / we thus obtain

fo= 2 (1 4 (S, — 1)) Py (cos). (44.11)

For k— 0 (£ > 0) the Coulomb functions behave as
Fi— C; (kry'+,
(k) s Co\? (44.12
Gr oty [+ ey (£ 0 0], )

where O;(r) is a certain smooth function of & which is independent of r and
is of the order of unity; also

ol P 2 A
Ci=Coprymy (12 + 19 @ +97) ... (1 + 091", Co:[ﬁm’_—,] . (4413
The matching condition (44.4) gives

S—1=—2ilt Fi/Fi—2 (44.14)

[7] . i .
! (GG —z+ G, (Fi—2F)

We see from expansions (44.12) that the dominant energy dependence is
represented by the factor
F, - (k,)ilﬂ(zl_'_‘)

2=l 4 (44.14")
¢ 1+2n(/¢r)”*1(7:—:-) 0,(n

r=R
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§44. LOW-ENERGY SCATTERING CROSS SECTIONS

For sufficiently small k, when 7?38, this formula takes a simpler form,
since by (44.12) and (44.13)

Lf] const
T T 44,
; Py (44.15)

For particles of like charge, 1 >0 and

F
|s,—1|za-fze-m. (44.16)

If the particles have charge of differentsigns, n < 0 and
|8 — 1| == const. (44.16")
Note that the right-hand sides of (44.16) and(44.16') are independent
of I for 4*>*, The physical reason for this is that the centrifugal

potential (~—,!5) falls off much faster than the Coulomb potential (%),

8o that the latter is the dominant factor.
The partial scattering cross section is

o= @+ 1) (¥ —1) 4 (S, — )P =

=5 @+ 1) {dsint y;—2Re [(S;— N (U~ D]+ |Si— 1M =of +of° + . (44.17)

The first term is the pure Coulomb scattering. The Coulomb phase for
small k goes to infinity:

=d L+t = Ay
LSl rle s o (o gy n+ 2(1+2)|n|'
Therefore of for k— 0 oscillates and goes to infinity as & for all I,

The second term in (44.17) describes the interference between nuclear
and Coulomb scattering and it is also an oscillating term. To orders of
magnitude,

e for repulsion,
o ~ (44.18)

Ty for attraction;

o — the pure nuclear part of the cross section — is a monotonic function
of energy:

1

et for repulsion,
oP ~1 : (44.19)
" for attraction,

Nuclear scattering (o’ + oY) for particles of like charges is thus
exponentially small for k£ — 0 compared to Coulomb scattering (o) and is
entirely suppressed by the latter. In case of Coulomb attraction, all the
three terms in (44.19) are of the same order of magnitude.
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Ch.7. THRESHOLD EFFECTS

A characteristic feature of (44.18) and (44.19) is that neither
contains /. This is true for n*> £, which is equivalent to the condition

E<(f%=)’ / ol (44.20)

mR2 *

At higher energies, expressions (44.18) and (44.19) are inapplicable for
a given /.

§ 45. ENERGY DEPENDENCE OF TWO-PARTICLE
REACTION CROSS SECTIONS FOR LOW ENERGIES
OF INCOMING OR OUTGOING PARTICLES

Consider the case when the collision of two particles a and X is not
restricted to simple scattering; the two particles may also react,

a+X—>b+Y, (45.1)

producing two new particles band Y. As before, we will first treat the
case of neutral spinless particles. Let r be the distance between a and X,
r, the distance between 6 and Y. Outside the interaction range, the wave
function of the system in a state with momentum ! should have the form
(we use the same notation as before)

A{E95 (r) — SApstl ()] © (a,X) — Mg} (r) © (0,Y)), (45.2)

where the expression in brackets describes the incident and the scattered
waves of the pair a 4 X (see (44.2)), and the last term describes the
outgoing wave attributable to the product particles b +Y. ® (i,j) is formed
as the product of the interior wave functions of particles i and j. Here M;
is some function of &, and ¢f} is that solution of the Sch. Eq. for the
particles b 4+ Y* which behaves asymptotically as

in
1 ()
@f), (ry) ~ Vol '

(# and v, are the wave vector and the velocity of the particles 6 +Y). The
exact expression for " is given by (44.3), where r, should be substituted
for r, k, for k, and m, (the reduced mass of the pair b + Y) for m.

Consider the case of a reaction which absorbs energy (@ >0), i.e.,
which may occur only if the energy of the particles a + X (in the CM system)
is such that £ > Q. The energy of the product particles b+ Y in this case
is E— Q, and k, and v, are given by

b=V 5__._"&(’;’"— Q. v,=%’f, (45.3)

* Note that the Sch. Eq. is applicable to these particles only if the distance between them is n > R,
i.e,, the particles are free. For r1 <C R the particles b 4 ¥ cannot be ireated separately from g 4+ X,
since there is a possibility of transitions @ + X & b + V¥ and the system is described by a more complex
equation,
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§45. TWO-PARTICLE REACTION CROSS SECTIONS

The wave function (45.2) at r;, = R should match continuously the interior
wave function, and the constants S; and M; are determined from this condition,
The interior function is unknown, since we did not specify any particular
interaction. We are certain, however, that this ig a bounded function.

In other words, at r = R the product M, ¢{} (R) is also bounded. For k- 0,
9" ~ K", and for the product to be bounded we should have

) I+ 4 .
Mi(hy) ~ S‘,,) R ~Rks' " (45.4)
The reaction cross section
{ reac) b 3 p¥H
o .=1’—.(21+1”M'l T (45.5)

Thus, near the creation threshold, two slow neutral particles are created
in a state with { = 0. .
Let us now find the energy dependence of the reverse reaction

b+Y—at X " (45.8)

for low energles E, of the particles b47Y. The cross sectmn of this reaction,
as we know, is :

v.gf""=;’;~(2l+ DM

and it is determined by the same scattering matrix element M; as the direct
reaction. For the energy dependence we thus obtain

of™=v) ~ gL, (45.7)

g0

For small & the reaction mainly occurs in the state with / = 0 and the
reaction cross section is

co~ki’. (45.8)

This is the famous "1/ vlaw" which describes the energy dependence of the
cross section of nuclei for the capture of slow neutrons,

Since the state with [ = 0 is dominant, the cross sections for absorption
or creation of slow particles are spherically symmetric.

The energy dependences (45.5) —(45.7) are determined entirely by the
form of the wave functions ¢f" of the slow particles in a state with given
orbital momentum and by the boundedness condition imposed on the system
wave function; these expressions are independent of the properties of the
fast particles, In particular, ¢ and X may even be charged particles.

The situation entirely changes, however, if the slow particles are
charged.

In this case ¢f is expressible in terms of Coulomb functions:

o _ 1
o = .V;;(Gt-f-”"x)
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and using (44.12), (44.13) we obtain:
for the reaction X (g, b) Y (production of slow charged particles)

1 1
B TP~

o = (el 1) | Mt ~

45.9
{e-i'“l, if band Y have like charges, ( )
const, if b and Y have unlike charges;
for the reaction Y (b, a) X (collision of slow charged particles)
%— #, if b and Y have like charges,
23
{45.10)

6‘~L _1_ —
8 o

s

" if b and Y have unlike charges.
2

The condition of applicability of these expressions is the same as for
elastic scattering of charged particles ((44.20) of the previous section).
A characteristic feature is that o; are independent of ! for 02> [*, The
reason for this is the same as before: the Coulomb barrier is much
"wider' than the centrifugal barrier, so that the latter is relatively
insignificant for low energies, If the particles b and Y have like charges,
their capture and creation cross sections are exponentially small and
the fact that o, is independent of ! is of no particular significance,

If, however, the particles have unlike charges, the position changes
since the cross sections o; with [+ 0 are by no means small and even
at very low energies the reaction comprises numerous partial waves.
The cross section thus retains a definite angular anisotropy up to the very
lowest energies, unlike the cross sections of neutral particles,

Another remarkable feature of the production cross sections of slow
particles of unlike charges is that the cross section is finite starting at
the very threshold. At the threshold the cross section thus abruptly
and discontinuously falls to zero. Of course, in reality there is no such
jump. The point is that production of charged particles is accompanied
by emission of y quanta and introduction of this factor, as was shown
by V.M. Galitskii, leads to a very steep but nevertheless smooth (and
not discontinuous) drop of the cross section to zero as % — 0, The cross
section thus very rapidly increases as we move away from the threshold,
approaching a constant value.

For easy reference, we have summarized all the results of this and
previous sections in Tables 1 and 2 below,

TABLE 1, Scattering of slow particles

No Coulomb inter-

a and x have like charges

aand X have unlike

charges
action between ™
aand X op=of + a?) +c;’) o = - sin'ny
oy ~ kY of) ~k~3 2™ (oscillating | of¥) ~ £~# (oscillating
(factor) factor)
G?) ~ b2 41 G;’) ~ k2
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All the results of this and previous sections are applicable if the nuclear
interaction V falls off sufficiently fast with distance. It can be shown that
a sufficient condition is exponential decrease of the interaction

V ~ eor
P00

with arbitrarily small parameter a. In what follows we invariably assume
that this condition is satisfied, but in most practical cases a weaker
constraint will be quite adequate as well,

TABLE 2. Reactions with the participation of slow particles
b Y and fast particles a X

"No Coulomb

interaction dand ¥ have |6 and Y have
between like charges [uniike charges

band Y

Y@, o)X 8 ~ g2 c,~h;"¢""“ s,.-.-k‘;'

X@ b)Y | g~ BH | g met™ | 0~ const

We have so far regarded b and Y as spinless particles. The above
results, however, are entirely determined by the form of the radial wave
functions and are independent of the spin functions. Therefore all the
threshold energy features (Tables 1 and 2) can be immediately extended
to the case of particles with spin.

With regard to the applicability of these expressions, we would like
to mention the following:

(a) in their derivation we assumed that the gquantities (of the type of z
in (44.4)) associated with the interior region (r < R) were independent of
energy;

(b) for the exterior wave functions we used their asymptotic expressions
(44.5) and {44.12).

The first of these two assumptions has a direct bearing to the particular
problem being considered, and it should naturally be verified in each case.

As regards the second assumption, we can be more definite in our
evaluation:

1) expansions (44.5) are applicable for 4R < 1, i.e., they are valid
for energies

BB < pomn

near the threshold;
2) expansions (44.12) are valid for

OE»<(R) / e
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Sometimes, e.g., in the case of charged "strange' particles, we have

(AE)a > (AE),.

This gives rise to the following remarkable situation: immediately near
the threshold (£, < (AE),) all the energy dependences are of the ""Coulomb"
type. However, for (AE), < E < (AE)s, the Coulomb interaction is ignorable
and the cross sections behave as those of neutral particles

§ 46. ENERGY DEPENDENCE OF THE X (g, a) X
SCATTERING CROSS SECTION NEAR THE X (a,b) Y
THRESHOLD, WHEN X, q, b, Y ARE SPINLESS
NEUTRAL PARTICLES

We will now show that the elastic scattering cross gection has a very
peculiar energy dependence near the threshold of the reaction X (a,4) Y
/198 —200/, The four possible energy curves are shown in Figure 35.
Analysis of these curves yields a wealth of information on spins and
parities of the particles X, a, b, Y and on their interactions.

o , o c ' o '

1 ' H \

|
A Y L
| | | :
l _— ! |
Lcth £ é:th £ é.th £ t-th £

a b c d

FIGURE 35.

Suppose that when the relative energy E of the particles X and a is less
than E,, only elastic scattering X (a, @)X is allowed, whereas for E > Ey the
reaction X (a,b) Y is also possible and the wave function thus has the asymp-
totic form

[eu.r+ “"'22‘ (S — 1)P,]®(a.X)+
+ L,;,' E(2I+I)M,P.®<b nyz. (46.1)

Here @(i, k) are the interior wave functions of a pair of particles i and &;
k and k are the wave vectors of the relative motion of the pairs a, X and
b, Y, v and vy, are the corresponding velocities, and P, is the Legendre
polynomial. The first term in (46.1) describes elastic scattering and the
last term accounts for the reaction. The matrix elements of scattering
and of the reaction §; and M, are related by the unitarity condition

[Sef* + 1Mt = 1, (46.2)
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Below the threshold, the particles b, ¥ cannot escape to infinity for lack
of energy. The last term in (46.1) in this case describes exponentially
' decaying "'tails'': ks is imaginary, & = i|k|, and &4 = g4, The law
of particle number conservation (i.e., equality of incoming and outgoing
currents) has the form

|Sipf = 1. (46.2")

As we have seen in the previous section, the reaction cross section
near the threshold depends on energy as

ot m e QL+ 1) | MiP ~ B

so that M; = m#f"™, where my is a constant. Inserting this expression in
(46.2), we find for E > Eyn

lsllzl—%[m;Pkf", (46.3)

i.e.,

$|=Sf°(l—-;-lm,l'k§”'). (48.3")

where |Sf| = 1. The matrix element Sy is an analytic function of energy,
and expansion (46,3') should therefore remain valid for £ < E;, where no
inelastic processes occur and where |§;]= 1. Since below the threshold &,
is imaginary, then at least up to terms of the order "' we again have
below the threshold |S{”] = 1. The equality |S{”|= 1 is thus applicable both
above and below the threshold, so that S{” may be written as ¢*”, where
the phase 8 is real both above and below the threshold, i.e., for both
real and imaginary k. This means that 8’ contains only even powers of k:

8 (ky) = 8™(0) + Ka + .

Immediately near the threshold (&R <€ 1, where R is the reaction radius),
we can drop all powers of k higher than the first, so that

Solk) = (1 — Z|moP k) Si(k) = ™, (46.4)

where § is the value of the phase 8 at the threshold. Thus, near the
threshold all §; with /s 0 can be treated as constant, whereas S, is a
linear function of 4.

Given the energy dependence of Si;, we can compute the energy variation
of the elastic scattering cross section near the threshold:

6e 0, E)=[F (O E)* = |} (9, Eu) — o ¥ |mo [P ks ! =

=06.,( E, —ﬁ Ve 8 Ewoi((hs]) X

% {sin (28 — o) for E> Ey,
cos (28 —a) for E<Ey,.

(46.5)
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Here 0o (8, Ey) is the differential cross section for the elastic scattering
X (a, a) X at the threshold, « =« (f) is the phase of the scattering amplitude
at E=Ey:

F@, Ep) =e*®|f0, Ey ],

and a;(jk)) = % |mg[*ks coincides with the total reaction cross section if

E > E!h

Near the threshold o; (|&,|) is proportional to |4 | and all the other terms
are independent of energy. Thus near the threshold o (6, ) is a linear
function of |ky| ~ V|E — E,{; the various forms of energy curves are shown
in Figure 35,

Note another important point which will often recur in the following:
the form of the elastic scattering cross section near threshold contains
a wealth of information on the properties of our system,

Indeed, the cross section g, is a linear function of |k | on either side
of the threshold. Measuring the slope factors of the two branches and
assuming the cross section o(8, E;) at the threshold to be known, we can
use (46.5) to calculate 28, —« (8) and the reaction cross section o; (J&)).
Since, moreover, we know the value of

If(ev Em\ I = ’ Oel (9, Er.h '

we can find the function
evhf0, Ey) =’ @2 |f(0, Ey)l,

whose expansion in Legendre polynomials directly gives all the scattering
phases &. It is readily seen that no ambiguities and uncertainties arise
in this case, which generally plague the ordinary phase analysis where
they are eliminated only if the scattering cross sections are known for all
energies from 0 to co.

For the total elastic scattering cross section we have from (46.5)

sin?8y for E > Ey,

L}
sat (B) = ou (Eund—20: (k2 [ 1 sin28 for E< Ey, (465
i.e., only two types of energy curves are possible in this case (types a
and b in Figure 35),

The range of application of (46.5) and (46,5') is determined by natural
constraints which follow from our derivation: the reaction matrix element
M, should be proportional to &, and its square should be small, M1,
Both these conditions are satisfied if kR <€ 1, which in fact determines
the energy range around the threshold where (46.5) and (46.5') apply:

W<y ie, VIEZEl<V som- (46.6)

Another condition is that the intermediate system should have no reso-
nances near the threshold, since otherwise the resonance phase §, is a
rapidly varying function of energy and the expansion analogous to (46.5)
will be very complex.
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§ 47. PHYSICS OF EFFECTS NEAR THE THRESHOLD
OF AN INELASTIC CHANNEL

Let us consider the physics of our result. Formally, the threshold is
a singular (branching) point of the equation describing the properties of
our system, since for E < Ew this equation has a unique solution corre-
sponding to the scattering X (4, )X, whereas above the threshold (£ > Ew
there are two independent Bolutmns corresponding to different conditions
at infinity: 1) the particles a,X collide and 2) the particles b,Y collide.
It is therefore clear that at the threshold the wave function of the system
has a singularity. The physical character of this singularity can be easily
elucidated by considering the agsymptotic expression for the wave function
(46.1). Below the threshold the particles b,Y produced in collision between
a, X cannot separate for lack-of energy. Outside the reaction range their
probability density décreases exponentially,

IM.l’iﬁ,ﬁ’df g—!lk,]r,‘m.ll( )d& (47.1)

As we approach the threshold k,—» 0 and the "cloud" of the particles b, ¥,
whose distribution in space is proportional te ¥4 - spreads over pro-
gressively larger distances from the reaction region. In other words, the
radius of the mtermedxate state produced by collision between g,X and the
relative number of b, Y particles in this intermediate state increase
indefinitely as we approach the threshold, The lifetime of the intermediate
state increases correspondingly.

When we cross the threshold, the exponential tails e*I" become outgoing
waves (¢*n) of particles b, Y, so that free particles b, Y may exist for £ > En.
Thus, the immediate reason for threshold anomalies is to be sought in
the indefinite ""swelling" of the intermediate system as we approach the

threshold from below,

This qualitative conclusion can be confirmed by a direct calculation /187/
from (43.8) of the time Ty, that the system remains in a sphere of radius
r=R,, where R, is greater than the particle interaction range.

The scattering matrix can be written as

3 (uua. iBe! (s.n.))

iBel (31+31) o oWBe

We know from the preceding analysis that

for E>En
a=(l—rk), B= (2Tks)l/'v O = vkg, 01 = by,
for E<Ew
a=1, 61=6m~—%7|k,|, 8 = ivik,|, B =i2v| k|,
where 8, v = |m0|’ and v are constants,

Inserting in (43.8), we find that below the threshold

Tu (Ry, E) _2*_1 = {hlm(l — et <R-+v))——sm2(k1R1 + ol)} (47.2)
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and above the threshold

Tu (R E)— R o [ osin2 Ry + &) + L sin 2k (Ry + W)} (47.3)

U1

The only rapidly varying functions of energy in these expressions are |g|
and |4|. The energy dependence Ty, (Ry, E) below the threshold is thus
entirely determined by the first term in (47.2). For fixed R, this term
monotonically increases as we approach the threshold. The qualitative
trend of Ty as a function of energy is shown in Figure 36, Ty has its
maximum at the threshold point.

5 (BE) !
{
| |
! l
! |
1 !
— . 1 >
En £ £y, 3
FIGURE 36, FIGURE 37.

Expressions (47.2), (47.3) give the time Ty, (R,, E) that the system spends
inside a sphere r = R,. We have already seen, however, that the radius of
1
Toa]
threshold. Therefore Ty (Ry, E) must be less than the true lifetime of the
intermediate state.
To establish the energy dependence of the true lifetime, we should take

the intermediate system increases indefinitely (as ) on approaching the

Ri> I_kia—l' In this case, as the energy is incremented by AE, the time that
the system spends inside a sphere r = R, changes by

(Tu(Ryy E + AE) — Ty (Rys E))R—> v (I—i,—'— ! ) , (47.4)
i<

1=00 Ivl'

where |v,’| is the magnitude of the velocity corresponding to the energy

E + AE. Clearly, expression (47.4) gives the energy dependence of the true
lifetime of the intermediate state near the threshold. We see that on
approaching the threshold from below the true lifetime of the intermediate

state goes to infinity as ~ *]i—(Fi re 37). This is consistent with

the qualitative treatment at the beginning of this section.

§ 48. GENERALIZATION TO PARTICLES WITH SPIN
In previous sections we already observed that the study of threshold

anomalies in cross sections provides a wealth of information on gystem
properties, This is particularly clear for particles with spin.
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Consider two most important cases, which will help us to elucidate all
the characteristic features arising when particles with spin are involved /201/.

Let a and X be spinless particles, let Y have a spin s and let b have a
spin of one half, Two cases are possible:

(a) P (a)P (X)=P )P (Y) (P () is the parity of the particle i). Near the
threshold » and Y are created in a state with orbital momentum (= 0,
i.e., total momentim } = s+1/2. Since by assumption the parity of the
incoming and the product particles is the same, the reaction X (a, b) Y is
possible only if a+ X have an even orbital momentum /, equal either to
s+1/2 or s-1/2(according as-whith of the two numbers is even). Corre-
spondingly, conditicn (46.2) will relate M, to S, and not S,, and in place of
(46.4) we obtain

Sy (1= mef k)i Sy =% (L),
The séattering cross section Aow takes the form

) = 01 @ Bd — 25 Vou @ Ead o (BiD@h+ 1) x

sin(28,—a) for E>>En
xP;.(cosO){w(%z‘““) tor Bz Ea (48.1)

and we see that the cross section anomaly described by the second term in
this formula vanishes for those angles when P, = 0, We can thus find the
orbital momentum I and hence the spin of the particle Y.

(b) The case P{@)P(X)= — P (b) P (Y) differs from the previous case in

that 4 is now odd. Since Pyus (cos %) = 0 and Pg, (cos %):#0, if the threshold

anomaly vanishes for 8 = ; (in the CM system) we can safely say that the
initial and the final particles had different parities, whereas if the threshold
anomaly does not vanish at that angle, the parities were the same,

Study of threshold anomalies, as we see from (48.1), gives various other
data as well:

1) the ratio of slope factors of the cross section curve before and after
the threshold gives (26, —a (8));

2) the angular distribution gives the modulus of the scattering amplitude
|f 6, Ea));

3) the angular distribution of the anomalous term in (48.1) then gives
the orbital momentum / and hence all the elastic scattering phases;

4) the magnitude of the anomaly gives the total reaction cross section g;;

5) the parity and the angular momentum / give an indication of the
relative parities of the pairs ¢,X and 4,Y and determine the spin of the
particle Y. This method of parity determination is particularly promising
in the physics of "strange'' particles.

Thus, detailed study of the elastic cross section near the threshold
greatly facilitates the very problem of phase analysis, makes it uniquely
solvable, and supplies a wealth of information on the inelastic channelas well.

If the spin of particle b is some j, and not 1/2, the only complication
is that the anomalous term in (48.1) will have to be replaced by a sum of
identical terms corresponding to all the values of /; allowed by momentum
and parity conservation. This will make the analysis more tedious, but
in no way affect the amount of data that can be extracted from experimental
scattering findings,
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Another important case is when the incident particles also have spin,
Let a have spin 1/2 and X be spinless, as before; the spins of b and Y are
1/2 and s, as before.

The finite spin of @ introduces a substantial complication in the relevant
expressions, since now for the two values of the total momentum j=s+1/2
of the product particles we have to find two orbital momenta /4 and 4 of
the pair a,X of appropriate parity such that the corresponding total momenta
h=4+1/2 and /,=14+1/2 are equal to s+ 1/2 and s— 1/2, respectively,
Thus, the reaction may proceed through any of the two orbital states and
it is therefore described by two matrix elements My, = M’', My, = M",

The linear dependence on k& near the threshold is therefore characteristic
of two orbital states:

$+Y/s t’l;:l/ s (

A =ée

1_%“",\,); S;:’I'=e“:x-l/'(1__—k2’-|m"|‘>. (48.2)

Now the previous formulas can be easily applied to calculate the cross
section and the polarization of g, X:

0e1 (8, E)=\g(® E)I"+[h(8, E),
PO Ey=2Im[h(@®, E)g' ®, E)/s., 0, E),

g O E) = g DU+ (S — 1)+ 15— 1) Py, (48.3)
i

1

6, E)= 5z

2 ST — s PP
i
If, say, the internal parity of the particles before and after the reaction
is the same and s is odd, all the S} near the threshold can be treated as
constant, except

L= gafi—le

, =e B (I——%Im’]*), h=s+1,

\ giglhits
S+t _ (1_"2_2|m”|2), Lh=s—1,

and by (48.3) we have
; = Lt/
g0 E)=g@®, E) + ‘{l—' [| m Ll Py 4 m (1) et p,,] '
. (48.4)
ph—ls bt
BO B =hO, B — 2 |m'p ¥ P 4 | pe i PP,

where, as before, % and k&, are the wave vectors of the relative motion of
particles aX and bY, respectively, and P’is the associated Legendre poly-
nomial, Inserting (48.4) in (48.3), we readily obtain the energy dependence
of the cross section and the polarization. Bothare foundtohave a singularity
at the threshold, as expected. The cross section and the polarization are
both linear functions of |4, | near the threshold, so that experiments at a
fixed angle 0 give six quantities: o, (8, Ey), P (6, E,), and the slope factors of
¢ and P on either side of the threshold. Analysis of the experimental data
is not as simple as before, but it nevertheless gives the parity and the
spin of Y, the cross sections oit”:, and the elastic scattering phases 8.
Threshold measurements give such a wealth of information for a fairly
simple reason. Near the threshold, we actually measure three independent
quantities: the relevant parameter itself (cross section, polarization, etc.)
and its derivatives with respect to |4| on either side of the threshold, which

5149 184
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are expressible in terms of the scattering phases at the threshold. Thus,
near the threshold the experiment yields three times as much data for the
determination of the unknowns as the usual experiments do.

Suppose, for example,' that particle a (spin 1/2) is scattered off X
(spin 0). If in the relevant energy range all the inelastic channels are
closed, it is well known that phase analysis requires measurement of the
cross section and the polarization of a at all angles. If, however, some
inelastic channels are open, phase analysis can be made only if, besides
the elastic channel, we have investigated all the open inelastic channels.
Even in this case the phase analysis does not give single-valued results.
The situation therefore'is substantially simpler if we study the region
near one of the thresholds.

Suppose that this ia the first threshold, i.e., for E < E,, only elastic
scattering is possible., Bgﬁmeasuring the cross section below and above
the threshold, we obtainthree equations for the scattering phases. Thus,
polarization measurement is superfluous, since from the three equations
provided by the measurements of ¢ we can find all the phases 8 and hence
to compute the pchrizm( ;ordimry cases we have only two equations
for phases: the measuréd values of ¢ and #). In the more complex case
when several inelastic channels are open and the scattering phases are
complex numbers, cross section and polarization measurements near the
threshold will enable us to determine all the phases without going into a
long study of all the open channels besides ‘the elastic channel.

Threshold regions are thus unigue in the sense that relatively simple
means are sufficient to disclose a wealth of information there.

§ 49. GENERALIZATION TO THE MULTICHANNEL CASE

We have so far considered only two coupled channels {4,X and b,Y).
In practice, however, we are often dealing with multichannel problems.
A suitable example is provided by most nuclear reactions and also by
reactions between strange particles. We will therefore consider the general
case of a multichannel system /201/. We start with ¥ + 1 pairs of particles
a,X: (i =1,2,..., N+ 1), which may react according to the general scheme

a.-+X,2a,+X,-.

Let the channels be numbered in the order of increasing threshold
energies E; (i.e., the lowest rest energy is that of the channel a4, X, ; as the
energy is increased, the channel g, X, is opened, and so on). The properties
of this system are described by a (N + 1)-row scattering matrix S, (i, j=
=1,2,..., N+1),

Let us study the energy dependence of the scattering matrix elements
near the threshold of the ( N + 1)-th channel. The cross section of the i - j

process is oy = - |S,,—6,,| where k; is the wave vector in the {-th channel

(we assume for s1mphc1ty that all the particles are neutral and spinless and
further consider only the case of zero orbital momentum. The generaliza-
tion to finite spins and orbital momenta is trivial, though fairly tedious.)
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Near the (N + 1)-th channel all the Siwvs) have the form Sin.y = mk'"; Swi, va =
= 1, where m; are constants and & = ky..

The law of particle number conservation leads to unitarity of the S-
matrix, i.e., the matrix elements are related by

N+1
Z SuSu = 8y, (49.1)

k=1

where the dummy index goes over all the open channels, Time reversibility
makes the §-matrix symmetric:

Six = Suie (49.2)

Using these general properties and the known form of S;y.,, we can
find the energy dependence of all the matrix elements S, near the threshold
of the (N + 1)-th channel. We expand all S; with {, j= N+ 1 in powers of k
(retaining only the first two terms):

S,'j = S}}" + [ k. (49.3)

Since all S; are analytic functions, this expansion is valid both above and
below the (N + 1)-th threshold, Below the threshold, there are N open
channels, kis imaginary (k= i[k[), and the unitarity condition takes the form

N
D SD + aui | k) S — i | k) = dime (49.4)

=1

At the threshold (& = 0) it reduces to

N
DSOS = dum. (49.5)

=1
Above the threshold (k¢ = |k]), a new channel has been opened and the
unitarity condition is

N

Z‘_.(SE?’ + ay k) (SSY + ami k) + mimmkt = 8im. (49.86)
1

From all these equalities, we obtain by elementary manipulations the
following expressions for the coefficients a;:

a1j=——;— mm;j. (49.7)

This is the solution of the problem formulated at the beginning of this
section. Indeed, it enables us to find the energy dependence of all the
cross sections g; near the threshold of the (N + 1) -th channel (note that to simplify
the treatment we confined ourselves to the case of zero orbital momentum):

0= -:? |85 — 85 = a5 (Ewaa) + -:?- Re [(3;— S mumsk] =

Re[(3,; — 8" for E> Ey,,
ac,;(EN.,;)-i-%lkl e[y —Sy )mmg} for E> Ey, (49.8)
(]

— Im ({8 —S}?).) mum;] for E < Eyy,
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§ 50. SINGULARITIES NEAR CREATION THRESHOLD

mp and m;, apart from phase factors, are proportional to the square root of
onsnpk™t and aynak?, respectively.

Thus the threshold anomaly of the { —»j process increases with increasing
cross section or, inother words, as the coupling i~ (N 4+ 1) and j— (N + 1)
become stronger. This opens immense vistas for the study of interactions
between any pair of particles from the energy dependence of the reaction
between other particles.

The fundamental conclusicn can be summarized as follows. At the
threshold the cross sections of all the processes {—j have singularities
of the form shown in Figure 36. Study of these singularities will disclose
a wealth of information, '

§ 50. SINGULARITIES NBAR THE CREATION
THRESHOLD OF CHARGED PARTICLES

We have seen’ ‘that thc
section of the eltstit i
section of the threshold procq,pu X da

 threshold singularities in the cross
X iricreases with increasing cross
). ¥, For thig reason, the only

contribution to singularitias near the creation threshold of uncharged

particles comes from the b, Y creation channel in a state with I = 0, since
for [+ 0 the creation reaction is suppressed; the centrifugal barrier
prevents the product partmles -5 and Y-frem leaving the reaction region.

If the particles-t and ¥ have like charges, their creation cross section
near the threshold is small even in the ¢hannel with { = 0 on account of the
Coulomb barrier, No threshold singularities will thus be observed in the
elastic cross section in this case.

The position is entirely different if b and Y are particles of unlike
charge, and this case deserves special attention /202/., The approach
outlined in § 46 is inapplicable in this case: for neutral b and Y the threshold
point E = Ey is a simple branching point and the expansion for S obtained
above the threshold remains valid below the threshold as well, which is
no longer so for charged b and Y. The point Ey in this case is an essential
singularity, since in a Coulomb field there is an infinite number of bound
states with Ey;, as their condensation point. The expansions of all the
physical guantities below and above the threshold are now essentially
different. A more detailed analysis of the problem is therefore indicated,
We will have to introduce a number of assumptions concerning the properties
of our system, since the principle of particle number conservation in itself
is no longer sufficient,

In what follows we assume that all the particle interactions (except the
Coulomb forces) are zero outside a certain range R, which is referred to
as the reaction range or radius, This assumption alone is sufficient to
establish the form of threshold singularities.

We know from the general theory of reactions that outside the reaction
radius the wave function of the reaction

a+ X
a+X<
b+Y
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has the form (we consider only one partial state at this stage, and therefore
only the radial part is given)

¥ = [\P(') - Saa""(“)](D (av X) - Sabq’(ﬂ P (bv Y)v (50‘1)
P& are the radial functions of particles @ + X which have the asymptotic
form ~ Viv_ei“ar. ¢® is the radial function of particles b+Y,

TR I .
tp“_.ﬁb(G—i—iF),

Sas and Sg are the elements of the scattering matrix.

We know from the previous chapter that in two-channel systems the
scattering matrix elements depend on the interaction inside the reaction
range (r < R) only through three real parameters. In terms of these para-
meters, the relevant elements of the S-matrix can be written in the form
(see footnote to p.168)

S, = ¥ U Ra®) (= Ryp®) ~ Rep 7yt |
YA —Rv) (1 —Ryv) — R, v, v

(50.2)
2R (k0 R,
e A —R, v —Ry ) —RYT,*

Sap =

Here 1, = o P T= LA are the logarithmic derivatives of the wave
\p('*) re=R q,(*) =R

functions at the reaction radius, & is the wave vector of the pair 6+ Y, Ra
are the "interior' constants (the elements of the R-matrix) which are
determined by the nature of the interaction for r<R; Ra, ¢¥, and v can
be regarded as virtually constant since ¢ and 7 are extremely sensitive
to energy ( E, is an ordinary regular point for Ru, %, and %, whereas for
¢ and 1 this is an essential singularity). We may therefore write (50.2)
in the form

1—1/A° | _ ¥ c 1
Saa""”‘ 1—</Aa "’ S“_@A—t ' (50-2 )

where all the slowly varying quantities are collected in the constants §, C,
and A, so that the dependence on the ''fast' variables v and ¢®* emerges
distinctly. The matrix elements Sq and S, naturally satisfy the unitarity
condition which in this case is equivalent to the statement that 8 is real and

m & = S

To find the energy dependence of the elastic cross section, we require the
logarithmic derivative of T above and below the threshold. This derivative
cannot be computed using expressions (44.12) of this chapter, as they are
applicable only above the threshold, when &> 0. We have to use the general
expression for the Coulomb function, which remains valid below the threshold
as well:

1 Tl .
W) =y=e T TYTUFT+IIT+T—imx (50.3)
1 sing(l444in) \ 4, '
X Ty (- T e A x
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£ T+9Tp
{'"’2 TerDT@ToEsy T

E ? r(s';‘,‘;,f(f,’,x [b@+3)—¥ (0+5)— (s + 1)+

-+ z (__ l)a'l‘_‘_ F(s)T (g—3s)T (p) }
' — !

F T@lp—9 (50.3)

Here z= —2r; ¢g=1+14+in; p=21+42, T is the gamma function, and ¢ is
" its logarithmic derivative. Above the threshold (& > (), the function ¢f)
reduces to

i—ﬁ (Ger + iF ).

For [f| -0, r—+0, we obtain from (50.3) the following approximate expres-
sion for =:

{41 A4+ 8
1:,,,~—{I—I_H 1+u} (50.4)

where { is an energ&#Mdepéndent constant,

t— o Bt ‘ (50.4")
FroPE+y’
and
=— [ln (— 2kr) + 9+ 1 4+ in) —In|2knr{).
In case of particles of unlike charges, n=" 4 < 0above the threshold;

below the threshold, where v=i|v|, in<<O0. Seemg that for large values
of the argument the function ¢ behaves as

tl:(l'v) ~Inw

for nonnegative w and as
¢ (@) ~ In(—w) —ncot mw
fw{~sc0

for negative w, we obtain

{ ¢ for E> £, (50.5)
j1law L(—1)! cot imq for E < Ee.

Above the threshold ¢ is constant, whereas below the threshold it goes to
infinity an infinite number of times:

o3
(—=1) cot ian=(—1)"*" cot n ﬁ'(_eE:t:_fﬁ .

The energies E, at which the cotangent is infinite are given by

Ear—En= -5 53—, (50.6)
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where nis an integer, This expression coincides with the expression for the
energy of the Coulomb bound states of the pair b+ Y, which would have
existed had the only forces between b and Y been Coulomb forces.

Let us now consider the behavior of the elastic cross section. The
matrix element S,; can be written as

= a+Be
Saa—m?— Sh

where a =a, + ia, and p = g, + if; are complex constants formed in an obvious
way from the constants A and 6 in (50,2') and the constants entering expres-

sion (50.4) for T,
Above the threshold ¢ = i and the cross section of the X (g, a) X scatteringis

.=i.(2!+l)|81——1;' (21+1)[;?.+%%37_1|’, (50.7)

The cross section of the reaction X(a,b)Y is

c,——(2l+l)(l—|S,|’)— (2z+1){1_ o + itB i (50.8)

a*+ iLf

Both cross sections are independent of energy since &, —the wave vector
of the pair a + X — can be regarded as constant near the threshold,

Below the threshold only elastic scattering is allowed. Its cross
section has an infinite number of resonances which have the threshold as
their condensation point:

o, = kiz(zu- D|Si—1 |-=%(21+ 1) (1 — ReS) = 2"—:(21+ 1) sin® 8,

qqm 50.9'
8= tan-1 S H RO Eeorn FIE—Eal (5081

fegm

a1+ B (— 1) L cotnt l/ WTE—Eql

The physical reason for the appearance of resonances is the following.
If the particles b 4+ Y were not coupled with the a 4+ X channel and there
were only Coulomb interaction forces between them, the energies (50.6)
would correspond to bound states of the b+ Y pair. The coupling with the
a + X channel makes these states unstable with respect to decay intoa + X,

The X (a,d) X cross section develops resonances corresponding to these
quasistationary states. The position of these resonances is determined

by the condition 8 = nn +3'§, whence we obtain

2edm
cotn]/ 2—.,7‘,;%_?—_(—1)' 1o (50.10)

This condition does not coincide with (50.6), i.e., the resonances are
somewhat shifted relative to the position of the hydrogen-like levels (50.6).
This is quite proper, since the Coulomb forces are not the only forces
acting between b and Y.
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The density of levels p (E) (the number of resonances per unit energy
interval) calculated from (50.10) is

1 3183 1
p(E)=El/ (Em_E‘/. (50'11)

it increases as we come nearer the threshold. On the other hand, the
cross section averaged over some interval 2AE,

E+4AE
%= saz S dEcs(E)=:—’:(2l+l)><
E—AE a
% Re{—}_sm%[l——%]} S+ [1—Re ST 51’?&] (50.12)

is found to be independent of energy. This indicates that the width of the
levels decreases as (Ey,— E)» as we approach the threshold. When carrying
out the integration in (50.12) we should remember that for |S)|< 1,
i @f* —a*f) > 0.
Note that the energy-averaged cross section is continuous: comparison
of (50.12) with (50.7), (50.8) shows that G, = o;, where o, = 0, + o, is the
total cross section above the threshold, *
The qualitative behavior of the cross sections
cl near the threshold is shown in Figure 38.
Note that as ! increases, the levels
1 ﬂ become narrower and the position of the
resonances approaches the points prescribed
o, by expression (50.8) for pure Coulomb levels,
"""" 1T The physical reason for this is that for
!> 1 the probability of finding the particles
Oy one near the other is very low, so that the
transition » + Y —»a 4+ X is improbable.
£/ Y3 Thus, the lifetime of the quasistationary
th states increases with increasing {, and this
FIGURE 38. leads to a decrease in level width.
Quantitative estimates can be obtained
from (50.10) noting that as { increases
the constant rapidly drops to zero,
The energy interval 8F where the scattering cross section hasa resonance
can be estimated without difficulty. It should be of the same order of
magnitude as the binding energy of the first Coulomb level of b+ VY, i.e.,

O ~me* (42, (50.13)

For "strange' particles 68E =~ 10MeV, so that all the specific Coulomb
effects are manifested in this relatively narrow interval. At the same time
the condition AR<C 1 is satisfied in an interval of a few tens of MeV around
the threshold. It is therefore clear that although in the immediate vicinity
of the threshold the dominant effects are Coulomb effects, somewhat farther
away the theory of the previous sections for neutral particles can be safely used.

¢ This is a natural result, since highly excited states in a Coulomb field are similar in many respects to
continuum states of low positive energy. Using this analogy for averaged cross sections of processes

which eventually produce highly excited atoms (n3>1), we find §6,;,dE ~ 6oEq/n®, which enables us,
for example, to improve on the estimates of dielectron recombination probability derived in /243—245/.
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In atomic physics the situation is reversed: the region with kR <1 is
markedly less than $E.

We have so far assumed that the system has only two open channels.
The principal results can be readily generalized to the multichannel
case. This can be done by replacing the expressions for the S-matrix by
more general relations derived for multichannel systems. These expres-
sions are fairly cumbersome and we do not give them here. It suffices
to note that the physics remains the same: the singularities are just like in
the case of a two-channel system and they are observed inthe cross sections
of all the processes X; (a;, a) X; which are allowed near the threshold,

Spins are also introduced without any difficulty, and add nothing new.

The theory of this section is particularly useful for the study of atomic
collisions near charge exchange threshold of the form A 4+ B— A*+ B~ or
in atomic photoeffect reactions A 4+ y — ¢~ + A+ near the ionization threshold.
The existence of cross section resonances which have the threshold as
their condensation point has been experimentally established for these
cases a long time ago.

Another example is the scattering of muons by nuclei near the muon
inelastic scattering threshold. Experiments with 4~ mesons may prove
of particular interest, since the position and the form of the threshold
resonance in the u~ scattering cross section will enable us to gauge with
considerable accuracy the deviation of the potential from the pure Coulomb
potential, i.e,, to measure the geometry of charge distribution in the nucleus.
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Chaptler 8

THE LEE MODEL

§ 51, INTRODUCTION. THE MOMENTUM REPRESENTATION

Nonrelativistic quantum mechanics (to which the scope of our book is
confined) is generally concerned with the motion of particles in some given
force field. Creation and transformation processes are the subject of the
relativistic theory or, as it is sometimes called, the theory of quantized
fields. i

This ""delegation of responsibility' has deep-lying roots, since when a
new particle is created its energy need not be particularly close to its rest
mass. In the general case particles with E—mc® ~me® are created, and these
are relativistic particles.

Study of the creation of particle -antiparticle pairs draws heavily upon
the relativistic form of the theory. The nonrelativistic theory of particle
creation and transformation therefore cannot pretend to immediate physical
applications (we are not concerned here with the many-body problem,
where the concept of quasiparticles describing collective excitations is
introduced). However, the nonrelativistic theory may be of certain
pedagogical interest.

A student of relativistic theory has to plunge into a sea of new concepts:
the definition of probability density is changed, the concept of antiparticles
is introduced, Lorentz-invariance of the theory must be considered, the
light cone acquires new significance, matching between theory and observa-
tions requires mass and charge renormalization, the problem of the
"Moscow zero charge' is encountered.

In the nonrelativistic theory of particle creation, which is in the nature
of an idealized model, on the other hand, we can calmly and quietly
concentrate on the physical meaning of only some of these new and difficult
concepts. Experience fully justifies this gradual approach if not for all,
then at least for the majority of physicists; a notable exception was the late
L.D. Landau, who was highly suspicious of all kinds of models.

A particular model of this kind was developed in some detail by Lee
/203/* and it aroused considerable interest. In this chapter we consider
Lee's model with some modifications. Lee started with three types of
particles: two heavy particles V and N, and a light particle 8. For the

® Note that a computation technique similar to that of Lee's model had been previously used by Dirac /62/
in his analysis of resonance scattering. The modified Lee model was studied in /204, 205/, A relativistic
solvable model was considered by Zachariasen /206/ and Thirring /207/.
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light particle Lee uses the relativistic equation E* = ¢%p* + m**. The anti-
particle §, however, is not considered, and this is a highly significant
omission: it is particularly because of the absence of antiparticles that

we may consider only few different states of N, namely either V2N + 6 or
0+V 2N +20. If antiparticles are introduced, we have to consider an
infinite sequence of states

2V +2N+04+02V 4o420=. ..

By ignoring the antiparticle 8, the theory is confined to finite calculations.
If, however, the antiparticles 8 are ignored, the relativistic approxima-
tion for 8 is superfluous and outright inconsistent.
We will therefore develop a theory in which 8 is also nonrelativistic:

Eo (k) = ms + 0 - *

This theory is physically meaningful if the mass difference between N
and V particles is close to the mass of 8:

my,—my—m,<&m,.

In this case, in addition to the usual momentum representation of the theory
of fields, we can write all the results in the coordinate representations.

For the wave function of 8 we can write the Sch. Eq., The creation of 6
is accounted for by the inhomogeneity in the Sch. Eq., i.e., by a term not
containing $s. This lends a new intuitive dimension to the theory, which
is particularly helpful in connection with mass and charge renormalization.

The Lee model is also generalized to the case of ¥ and V with spin,

In this case, the theory with changing space parity leads to a relation
between the spin of the unstable particle and the direction of the outgoing
decay product /208/.

Apart from their educational importance, model considerations are also
of heuristic value, for prediction of qualitatively new effects attributable to
the interaction with electromagnetic field in theory where space parity is
not conserved. This includes the dipole moment of an unstable particle
/209, 210/ and the anapole moment /211, 212/ (interaction with currents)
of a stable particle,

Consider a system comprising heavy particles N and V and light particles
6. The Hamiltonian of the system without interactions is the sum of the
three Hamiltonians of free motion for each of the particles:

Ho = S[m.w BV )+ o VW] dr +
+ S[mNN* ()N (r) + f':‘n wv*wv] dr +
+{[1e* ) 01 + 5 Vo'vg|ar. (51.1)

Here my, my and p, V*, N* and ¢*, V, N and ¢ are the rest masses and the
creation and destruction operators of the particles V, N, and 8, respectively.

* Throughout this chapter we use the system of units with & == ¢ = 1.
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Detailed discussion of the properties of these operators can be found in
Landau and Lifshitz's "Quantum Mechanics' /8/.

Fourier-transforming, we change over to the momentum representation.
Using the new operators, which are functions of the momentum, we write
the Hamiltonian in the form

Ho = 2 [Ev(k) ViV + En (k) NiNa+ Eo (k) 949, (51.2)
&
The sum over k can be replaced in the usual way by an integral over k:

He = dk (Ey () ViVs + Ex () NiNy + Ev () 919, (51.2")

Here

kl
2m

ER)=m+ 2. (51.3)

Clearly, for a given momentum g, the kinetic energy of the heavy particles
is ignorable compared to the kinetic energy of the light particle 8. There-
fore, in what follows, we will use the Hamiltonian

Ho = { imV* 1)V (1) + m N* (1) N (7) + p9* (1)@ (7) + 5 Vo'V dr =
= (b [maViVa + m,NiMa+ (4 + 2 ) gi0,]

and sometimes drop the subscript & of the operators N, Vs, and ¢. for
simplicity. Thus, unlike Lee, we assume a nonrelativistic dependence
of energy on momentum for the light particle 8, although the rest mass has
been added.

The eigenvectors of H, can be classified according to the number of
particles of each of the three different kinds. The vacuum vector |0) is
an eigenvector of this Hamiltonian, and the corresponding energy eigenvalue
is E ='0. Other eigenvectors are V3]0), N;|0), and ¢;|0) with the energies

(51.4)

E=my,E=my, and E=p+ %, respectively, *

Note that all these vectors are normalized to & (k— &'):
0| Py, @3 0> = <O|[@,, 931 [0> = 8 (kB —£)<0[0) =8 (k—K).

Equalities of the form Hyp,[0> = E, (k) ¢a |0> are easily checked using the
commutation relations of the operators. Note that since the energy of V
and N is independent of the momentum, the eigenstates of H, are the vectors
Sk (rWV* (£)dr|0>, §f, (r)N*(r)dr |0> with arbitrary functions f; (r) and f, (). We will
also require states in which two particles — N and 8 — coexist. The corre-
sponding vectors N} ¢; |0> are normalized to §-functions and
3
E=my+p+ % .

Switching on the interaction. We now add to the Hamiltonian

an interaction term corresponding to the reaction ¥ 2 N + 8, which has the

* The mass of a "bare" particle V, which is an eigenvalue of the Hamiltonian Hg without interaction, is
designated by me. The notation my, is introduced at a later stage; it corresponds to the “physical” particle V.
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form V*Ng +VN*¢*. For simplicity we assume that all these operators are
taken at the same point, so that

Hy= gS V(P )N@ @)+ V(r) N (r)9* (r)] dr. (51.5)

Although in the nonrelativistic theory we can consider nonlocal inter-
action, i.e., "action at a distance", on passing to the relativistic case
nonlocality in space inevitably leads to nonlocality in time and clashes
with the causality principle. We will therefore consider local interaction
only. In the momentum representation,

Hy=gQ™ 3 Vi, Na, P, + Va, Ni, P1) On, wosmys (51.6)

Ry, by, By

where Q is the volume where the particles are observed. Changing over
from summation over & to integration over &, we find

Hy = W%Sdkl dkydky (Vi Na, @, + Va, N3, 91) 8 (ky — ks — ks). (51.6")

It is readily seen that a system described by the total Hamiltonian
H=H,+ H,
has two simple conservation laws

uv+n~=nl=const. } (51'7)
a, 4+ n, = n, = const,

where ny, ny, and me are the total numbers of V, N and 6 particles., As
the eigenstates of the system we therefore naturally choose states with
definite values of these conserved numbers., As these numbers are always
positive (no antiparticles), the corresponding functions contain a finite
number of particles and the problem can be solved exactly (without using
the perturbation theory, say).

It is readily seen that the free N and 6 particles remain eigenstates
even when the interaction is turned on, and the energy of these states
does not change, i.e.,

(Ho + Hy) N2 |0> = myN; |0,

M (51.8)
(Ho+ H) 93105 = (b + 57 ) 9 | 0.
However, a "bare' V particle — Vi|0> — is no longer an eigenvector of the
total Hamiltonian, The state of the physical V particle, |Ynu,od>=|V,>, will
first be solved in the first order of the perturbation theory. 71ne matrix
elements of the interaction Hamiltonian H, for transitions from the state
V510> do not vanish only for the states N1,:|03. We may therefore write

Wi 03 = | Vo> = V310> + { dir () Mg 0>, (51.9)
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where f(k) is of first order in g. The coefficient before Vs |0> is taken equal
to unity, since we are working in the first order of the perturbation theory.
We start with the equation

(Ho + HY |V = mv Vo). (51.10)

It is highly significant that already in the first order of the perturbation
theory we use the exact energy my, which is shifted relative to m,. Note
that although the first-order correction to energy is zero, my— my is infinite
already in the second order of the perturbation theory.

Equating the terms with N0y , we find

20 g (2m)~
fk) =— — (51.11)
v ®) +Eq(B)—my M+t = my

Thus the probability of finding a physical V particle in form N and 8 with
momenta between k and k + dk is given in the first order of the perturbation
theory by

' dk
[E®) —my]* 2np" (51.12)

The exact solution hardly differs from the first order of the perturbation
theory. Since the eigenstates of H constitute a complete system, we
naturally seek an eigenvector of H as a superposition of the eigenvectors
of H,, Each term in this sum should correspond to the same '"'charge"
values n, and n,as V*|0)does: n,= 1, n,= 1, Apartfrom V*{0). the only
vectors meeting this requirement are the two-particle states Nj,, Pr]0D.

The solution is therefore sought in the form

1
Vo> = Z5[V5105 + (dndra f (ks ) Nigi,] 03] (51.13)

The meaning of this expression is quite obvious: the state of a physical
V particle is sought as a ""bare' V particle surrounded by a cloud of decay
products (possibly virtual). The constant Z is introduced for normalization
purposes; for simplicity we consider a V particle at rest. The next
requirement is that |V,) be an eigenvector of H, + H, corresponding to the
eigenvalue my, which is the observable mass of the V particle., The
momentum is automatically conserved:

[ Ry, By) = (Ry) 8 (Ry + Ky).
The equation therefore reduces to the form

(Ho + Ha) [V + (ab 1 #) N2agi] 10> = my [V3 -+ {dk £ (k) N2 ] 0.

Equating the coefficients of N:.qf;lO), we obtain for f (k) the previous
expression (51,11),
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Let x*=2u (my +p —my) > 0. This will make the V particle stable. *
Further equating the terms with V5|03, we find

my= mv—g(2n)"/'Sdkf(k) =
. 1 d Bt ¢ kide
=Myt 8 g g =m0 + 2 (51.14)

This equation can be considered as an expression for the observable
mass my in terms of m, and g. However, my enters this expression in a
fairly complex form, namely as a free term and through %! A better
policy therefore is to determine m, in terms of g and the experimentally
observed mass my. If the interaction is strictly local, i.e., of the form
(51,5), the integral in (51.14) is divergent. Note that it also diverges when
a relativistic dependence of E on k is assumed. Hence, the bare mass m,
should be plus infinity if we are to obtain a finite observable mass my.

This is what we call the renormalization of the mass of the V particle.
Let us now compute the normalization constant Z taking (Vpay|Vine = 1.
We find
-1 o dk
z =1+(2€‘—),S————[E(k . (51.15)

) — my]?

For nonrelativistic E {(k), this integral converges in a theory with scalar
local interaction. However, if vector interaction is considered (see below),
this integral is also divergent. For relativistic E (k) the integral diverges
for the scalar interaction as well.

Note another important equality:

-1 dme 1.1
2t = g (51.16)

It is applicable in the relativistic case too, when both Z7! and m, are
expressed by divergent integrals,

To understand the physical meaning of this equality, we apply to a
system in the state |V,) a small perturbation of the form AH = AmoV;V.,.
The mass of the physical V particle changes, Am = BAm,, where the coeffi-
cient B is the fraction of the "bare" V particle contained in the physical
V particle, i.e., B=2Z. Note that this method for determining the fraction
of the ""bare' V particle in the physical V particle is analogous to the
magnetic-field timing device used in Chapter 5 for measuring particle
collision times.

The exact probability of finding a physical V particle in the form 6 and
N is thus

__ ez
[E (k) —myP® (2r)*'

i.e., the g* of the perturbation-theoretical solution is replaced by g:

2 d -1
g2 - 1+ ) — et (619

¢ For an unstable V particle my, = Re my + iIm m,, ; the integration contour over &:should isolate outgoing

waves only (see Chapter 5).
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Since this probability is an observable, we actually observe the renormalized
charge g® It is highly significant that g enters the expression for the
scattering cross section, which is clearly an observable,

Scattering in scalar interaction, When interaction is
introduced in the Hamiltonian, the state with coexisting N and 8 with definite
momenta is no longer an eigenstate. In simple terms this means that
scattering is observed. Consider the time-independent problem with
scattering of 8 by N.* We will work in the center-of-mass system (this
is not essential, however, since N and V are much heavier than 8). As
always, the solution includes the incident wave N_igi,|0>, the scattered
wave, and the virtual V particle ("'bare'’, not physical):

© = N'egh, |0 +Sdk % (&) §iN*%] 03 + CVE 0, (51.18)

and we further demand that
(Hy + Hy) @ = E (k) @, (51.19)
where
kS
E(#)=my+p+ 5
From (51.19) we obtain the set of equations

% (k) [E (k) — E (ko) + g @0)": C =0, | k|| ko),
(51.20)

C mo— E (ko) + g (2 " 1 + { d x (k)] =0.

The function % (k) has a pole at |k|=|#&ol, % (®) z;——fi—w.

—B-
pole, as is readily seen, determines the scattering amplitude A = 2n'B and
hence the scattering cross section, For C we get

Its residue at this

‘ g dk -
c[E o —mo+ 55 rm—ro—s) = @

(51.21)

The integral in this expression is divergent and at a first glance it would
therefore seem that we should take C =0, x = 0, thus eliminating all scatter-
ing of 8 by N in our model, Note, however, that we are dealing with a
difference between a divergent integral and the infinite mass m,. Carrying
out mass renormalization and expressing m, in terms of the observable
mass my and the (divergent) integral from (51.14), we obtain adding up
two integrals a finite, convergent expression:

[ dk
—m'+(2;¢)'SE(k)—£(ko)——l_a =

8 dk ' dk _
=T (WSE(k)—m' 'y+(2n>'S'E_(k“_)—£(ko)—u—

_ ya (E (ko) — my) dk
= ’"v+(WS(E(A)—E(m—u)(sm—mﬁ'

" (E (ko) — ) di s
ety —m + 5\ Em—rrr—nEm= ~ o (51.22)

* A more difficult problem is that of scattering of 8 by V, which was considered by K&llen and Pauli /213/.
The § —V scattering amplitude was first determined by Amado /214/and the wave functions of the particle
were derived in a number of recent studies /215—219/.
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To use more precise terms, we improved the convergence of the integral
by adding another power E (k) ~ k* in the denominator following the elimina-
tion of m, from the original integral. In particular, this integral converges
in our model and we say that mass renormalization is sufficient to eliminate
the divergences. This, however, is not so for the relativistic E(k). There-
fore, in order to illustrate the various techniques for the elimination of
divergences, we will carry out a further transformation so as to express
the result in terms of the renormalized charge gi. Let

=_1 dk (51.23
= (2::)'8 [E (k) — E (ko) — Te] [E (k) — m) " )

For the scattered wave we have

R 1 g 51.24
v (k) (27 [E () — E (k)] [E (ko) — my] 1+ g'13" ( )

Expressing g in terms of g}, we get

1 1 &
1) = — Gy W= EGNEG) — ] T+ BTy’
where
_E(k)—my dk
le—h=—zg Slts(k)—E(ko)—mlE(k)—mvl" (51.25)

Let us try to elucidate the logical aspects of renormalization, remember-
ing that the actual interaction is not strictly local, being '"fuzzed' over
small distances ~ p, so that a cutoff is observed for extremely large

momenta A ~ %. This indicates that the integration over dk does not

extend to infinity but only to A.

For fixed A, all the expressions will be bounded. This does not mean,
however, that they can be used conveniently, nor does it mean that we may
take the limit as p—» 0 (A — o0), This can be done only if the renormalized
mass and charge my and g, are known (and independent of A) and the results
are expressed in terms of my and g,. To illustrate this point, we list all
the principal formulas in which we assume as given 1) m, g.A; 2) my, g, A;
3)my, g, A; A— oo,

=L /o
) A=—L = (51.26)
E (k) —mo + 55 (A 4+ T ko — )

mo=mv+-':—§(1t——"fx+-’{—),
g=o [+ 8 (353

9 A—— 2 1 1 . (51.26")
2 E (ko) — my Zv"z'(i 1 i_) '
tlTx—m &
__Pbg 1 1 51.26")
3) R S = v Yy (
1+ oo =Tk,
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Note that on passing 1) — 2)— 3) the dependence of the scattering amplitude
A on A for A — oo is progressively weakened and in cases 2), 3) this
amplitude has a finite limit for A — oo.

§ 52. THE COORDINATE REPRESENTATION

Very enlightening results are obtained when the problem of the physical
V particle is solved directly in the coordinate representation /220/. As
the Hamiltonian is invariant under Galilean transformations, the motion
of the center of mass does not affect the final results. Therefore, as in
all two-body problems of nonrelativistic quantum mechanics, we can
eliminate this motion, and the problem thus reduces to the motion of a
particle with reduced mass about an infinitely heave (fixed) center. In
our case the reduced mass of N and 8, equal to msp/(my +p), is nearly
equal to the mass p of the 8 particle. We can therefore neglect the difference
between these two masses, using p throughout. Since the motion of the
center of mass has been eliminated, we can introduce creation operators
of V and N at one certain point (say, the origin), V*and N*, such that
0[VV* 0> = 1 and (O|NN*{0> = 1. To obtain bounded results, we first take
the Hamiltonian H, in which the interaction function is fuzzed over distances
~ p (at a later stage we will pass to the limit as p- 0), * This approach
in fact corresponds to the renormalization technique. To simplify the

calculations, we take the interaction function in the form g(r) = giﬂgpl__")

(so that Sg(r)dr=g). Then

H=Hy4+ Hy=mV*'V 4+ m,N*N + Sq:" (r) (“__;F A) X
><(p(r)dr—i—[gV*NS%—L,;p)(p(r)dr—{-h.c.]. (52.1)

The solution for the physical V particle is sought in the form
Voayed = Z[V* 105+ N* {9 r) 9# () dr |0 | (52.2)

The Sch. Eq. in this case gives

™o + g (6) = my, (52.3)
A\b—u’¢=2pg°—ﬂ—-|—;;—”l (52.4)

with »* = 2 (my +p —my). (Here we made use of the spherical symmetry of
¥ (r).) If p</x(this can be always assumed, since p-+»0), equation (52.4)
can be replaced** by

Ay — 3% = 2ug (r) (52.4")

*  Strictly speaking, the following choice of g(r) corresponds to interaction in a thin spherical shell of
radius p.
** A more rigorous solution of equation (52.4) for r 3 pdiffers from that of (§2.4") by a term of second
order of smallness inp, These corrections are ignored from the ouset.
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and then
e—x’
b (r) = —2g o, (52.5)
IMg? &P
m,=m, + :’: ¢—p_, (52.8)

Expanding (52.6) in powers of p and dropping all terms starting with the
first order in p, we find

mo=mv+-‘%i—’%—%g'-x, (52.6")

whence we see that mn~% for p— 0. The wave function of the 0 particle

in the momentum representation ((f (¥)in (51.11)) is readily seen to be the
Fourier transform of $(r) in (52.5). The normalization factor Z = [1 +
+ {JyPdr)? therefore coincides with the Z calculated in the momentum
representation.

Expression (52.6') defines mass renormalization, We can also introduce
renormalized charge £ = 2Zg*, If we write

Corar=(aeirmr =gn, n=4£, (52.7)
we find
gi
-1 — 3 2 = L4 o 52.8
t=l+gh =5 (52.8)

It is clear from the last expression that the observable charge satisfies
the inequality

a<n =2, (52.9)

Otherwise g <0, i.e., gis imaginary. If gis imaginary, the Hamiltonian
cannot be Hermitian, and this seriously clashes with the entire statistical
interpretation of quantum mechanics., In particular, Z, which is equal
to the probability of finding a physical V particle in the "bare' state V*0y,
becomes negative. Mass renormalization for g*<C 0 leads to my > m,.
However, by the variational principle, an interaction which causes trans-
formation between particles can only reduce the energy of the ground state.
Thus, for g* <0 we encounter nonphysical states of the V particle with
E < my (so-called ""ghosts') /213/. Scattering of 6 particles by physical
V particles will involve transitions to ""ghost'' states, and at that with
negative probabilities. All this renders the theory with g2 > g2 = %
unacceptable from physical standpoint.

Let us now consider the scattering problem. The solution of the Sch. Eq.

HO® = E® with E =my +p + ZL; is sought in the form

© =CV* |0y + N*{0a(r) 9" (1 dr| 03, (52.10)
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where
Va (r) = g (— e 4+ S (k) ).

For § (k) and C we obtain the equations

(g +ptmy—m)C=f =ty L5+, (52.11)
C=—qgg 6—1. (52.12)

Inserting for € in (52.11) its expression from (52,12) and m, from (52.6),
we see that terms with % cancel out. The theory is thus renormalizable,

as for p—» 0, my— oo, but the scattering results approach a limit which
is independent of the cutoff radius.

The mass m, of the bare V particle also drops out from the equations
and the final result contains x, which depends on the mass of the physical
V particle.

After elementary algebraic manipulations, we find

lk:—_"_";—=u+-'%-;(k’+u’). (52.13)

We can now easily find an expression for the scattering amplitude:

g
A=-1+PLIL T Erq ¢=mytB—m,.

x w—ik

(52.14)

Note that fairly often the physical (renormalized) charge is defined by
the pole term of the scattering amplitude:

ne,
A~_2"(£—"|'Q) for E-—'—Q. (52'15)
Since the residue of the scattering amplitude at the pole £E = —Q is
RaA=-———-'%, (52.16)
2= (‘+ ch)

this definition is equivalent to the definition (51.17).
From (52.16) we see that the residue of the scattering amplitude is
negative and its absolute value is bounded from above:

lRuAl,__4<—E-, *=Y2Q (52.17)

Note that this restriction on the residue coincides with the constraint which
is obtained from (15.9) for R = 0. This is not surprising, since (52.17) can
be derived (using the result of /221/) proceeding only from analyticity and
unitarity properties, which hold true both for potential scattering and for
the L.ee model,
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The scattering amplitude A as a function of the complex variable & has
another pole at k= —1 (u + %) This pole, however, lies onthe nonphysical

sheet of the complex E plane.

The renormalized charge g, satisfies inequality (52.9), and it reaches its
extreme value as the "bare' constant g goes to infinity,

In this case the fraction of the bare V particle contained in the physical
V particle goes to zero, and in the limit the physical V particle is entirely
"made up' of N +6.* Thus, the limiting value of the residue corresponds
to a transition to a compound model of the V particle, made up of locally
coupled N and 6.

We see from (52.14) that in the limit as g* —» oo the results completely
coincide with the results of the theory of scattering by a singular potential
with a discrete level at £E = —Q.

As the fraction of N 4 6 in the amplitude of the physical V particle
approaches unity, we are drawing progressively closer to the limit; the
fraction of the bare V particle correspondingly goes to zero. In fact, the
bare V particle as such vanishes and its role is confined to a carrier of
the local interaction which binds the ¥ and the 0 in the physical particle.

2nx
W

We are near the limit if g*> Thus as we approach the pole and x%

becomes smaller, the limiting relations characteristic of the compound
model become applicable progressively earlier, for progressively smaller
values of g.

In this section we followed the method of /220/. In conclusion note that
inequality (52.9) was first derived in /121/. The equality sign corresponds
to the case treated by Landau /222/, The inequality was also generalized
to the relativistic case [223/.

§ 53. INTERACTION WITH UNSTABLE
INTERMEDIATE PARTICLE **

We will now solve the equations for the case of an unstable intermediate
particle. We again follow the method of /220/.

Suppose that the time-dependent Sch. Eq. has a solution which is an
exponential function of time (i.e., ~ g4E¢ with complex E,), whose spatial
part, describing the particles A and B, contains only an outgoing wave,
i.e., p~e/r, In this case &, is also a complex number. For this time-
dependent but nevertheless exponential solution we may also use equations
of the form (52.3) and (52.4).

The general approach here is the same as for a stable V particle: the

ki
properties of the physical unstable state, i.e., E, and k,, E°=-2“L +u4m,,
are assumed to be known, and the nonphysical bare mass m, is expressed
in terms of the physical quantity E,, the charge g, and the cutoff radius p.

* In the language of renormalization constants, this corresponds to Z going to zero, In the relativistic
case Z =0 may be regarded as the condition that a given particle is a compound particle.
** An unstable particle in the Lee model was considered in /224, 225/,
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§ 53. INTERACTION WITH UNSTABLE INTERMEDIATE PARTICLE

Then we turn to the scattering problem, i.e., a problem with arbitrary
real positive £, with incoming and outgoing waves, and find the scattering
amplitude. We use the expression for m, in terms of E,, g, p; as before,
the terms with1/p cancel, i.e., the resulthas adefinite limitas p =0, my— oo,

Before going into the actual details, we should make two remarks., The
result cannot be derived from the previous result for a stable particle by
formally replacing » with —ik,, since the bare mass m;, although a non-~
physical quantity containing a term 1/p (m,— oo for p — 0), should be real
if the Hamiltonian is to be Hermitian and unitarity is to be observed.
Formal substitution of —ik, for x in (52.6') does not ensure a real m,.

The second remark is purely technical: it is better to start withk, = v — iw
and express the final result in terms of v and w, which are both real
and positive.

Thus for an unstable state

eicrﬂnr o —w

53.1
1b(r)=C 7 y E°= pm —i%+p+m~. ( )

Inserting V() in the Sch. Eq., we see that the terms E¢$ and (p.+mN—-2AF) P

again cancel and as in (52.5) we obtain

¥y = — L (53.2)

r

Insertion of (53.2) in (52.3) gives

mo=Eo+—-“2%(%+w+lv)=°';w’—i35+%g"—(%+w+iv). (53.3)

Unlike (52.6'), this is a complex equation. Since my is real, the real part
of (53.3) immediately gives
w= e (53.4)

2x *

The problem with a stable V particle was characterized by two para-
meters, Q {(or x) and g. The problem with an unstable particle is charac-
terized by three parameters »u, w, and g, but not all of them are independent:
relation (53.4) leaves only two independent parameters. For the sake of
simplicity, we henceforth express g* in terms of w.

In particular

_otet w1 ,
Mo = % + " P. (53 5)

Now consider the scattering problem. Egquations (52.10)—(52.12) remain
in force, the only difference being that we use (53.5) for m, and in the final
result express g'in terms of w by (53.4). After simple algebraic manipula-
tions, we obtain

ik:i§=kl—;;—w" (53.6)
S = (k=0 —iw)(k+0—iw) (53.7)

T (k—v+iw)(k+v+iw)”
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Ch.8. THE LEE MODEL

The function S (and hence the scattering amplitude) has two poles in
the lower k halfplane at £ =+ v—iw. In the upper % halfplane, i.e., on
the first E sheet, there are no poles.

Clearly for v (r) of the form (53.1)

din(rd) _ ., S+1 53.8
—a =gy (53.8)

Hence expression (53.8) for a stable particle gives in the limit as g8 — o

dingrd) _ (53.9)
dr !

in accordance with the classical theory of Bethe and Peierls /20/. For an
unstable V particle (53.6) gives

din(rg) _ o w k2 (53.10
& ~wt7 )

T 2w 2 Tw'
which for real v and w and positive w can in no way be reduced to the form

Loy o, (53.11)

corresponding to scattering by a singular potential with a virtual level
(neutron —proton singlet interaction). In other words, calculations with
an unstable particle give two poles in the % plane, which are arranged
symmetrically about the imaginary axis in the lower halfplane.

A singular potential with a virtual level corresponds to a single pole
on the imaginary axis in the lower halfplane, at & = —ix, (see (53.11)).

Even if we make the two poles of the unstable particle merge and move
to the same point & = —ix,, the result is a second-order pole, so that the
equations will still be different from those in the case of a singular potential,
when a first-order pole is involved.

In case of a stable particle, the two poles lie on the imaginary axis and
do not coincide, so that one pole can be made to go to infinity, while the
other remains fixed; in case of an unstable particle this cannot be accom-
plished, as the two poles are symmetric about the imaginary axis.

We see from (53.4) that in the limit as g — oo, w—» oo; insertion in (53.7)
gives S = 1 for any finite # and v. Thus, the theory with an unstable
particle has no meaningful limit in the case of strong coupling. This is
the main distinction from the theory with a stable particle, which in the
limit of strong coupling reduces to the deuton theory.

§ 54. INTERACTION BETWEEN N AND V

We will now consider the interaction of two heavy particles V and N, *
We will show that, if the result is expressed in terms of the renormalized
mass, it is free from divergent terms, Moreover, the renormalized

charge will enter the result quite in a natural way.

* This problem was solved in the momentum representation in /226/.
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§ 54. INTERACTION BETWEEN ¥ AND v

A natural approach to this problem is in the adiabatic approximation.
This means that first, making use of the smallness of the mass of the 6
particle compared to my and my, We compute the wave function of 6 for
fixed N and V, separated by a distance 5. The energy of this ''state"
depends on b as a parameter and can be considered as the potential energy
of the interaction between V and N, associated with "emission’ and
"absorption" of @ particles. After that, we can easily solve the problem
of motion of the particles V and N in this field (this will not be done here,
however). Thus, the "'state’ of the particles V and N located at points a,
and a, at a distance b = |a@, — a;| from each other is described by the
operators Vj (N7) and V; (¥}), namely the creation operators of V (V) at
points r =a, and r=a;., The Hamiltonian H = H,+H, is written in the form

Hy=m ViV, +ViV) + m, (NiN, + N:N) +
+§ o (n— 5 A)oar,
H, =8[VINIS§“—r;‘::#Q¢(f)df+
+ Vi (W8 =P (r)ar] + h.c.

(54.1)

The most general form of the physical state with one V particle and one
N particle at a distance b =a;,—a, is

[ VN3 = CIViN3 [0y + CaViNE10y + NiNi{w(n)e* (r)dr (o). (54.2)

Since the Hamiltonian H is invariant under the transformation 122, the
"eigenstates'' can be classified according to the number / =11, where
C, = IC,. The energy E of such a '""state' is written in the form

E=my+my+e, (54.3)

since it is clear from the start that for 5 — oo we should have E — my + my
(in this case e —»0). Solving the Sch. Eq., we obtain

o= [ 1) (4.0
(m,— m, —2)C, + g%/, _, =0, (54.5)

where
ry=|r—a,|, ra=\|r —asl,
= 2u (my +p—my —e) =% —e.
Insertion of (54.4) in (54.5) gives

~N N3
nim = = [ 1] (s4.9
or
m—xt\ _ pgire™ R
(mo_'"V"‘ p )""ZF[T'*'!T],‘.,' (54.6")

From this equation we can find n and thus e,
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Ch.8. THE LEE MODEL

We should now consider the limit as p — 0. Expanding ¥|,—, in (54.6')
in powers of p, we drop terms of first and higher orders; then

(,,,o_,,,ﬁnz_,‘z):gg(%_”,ﬂ)_ (54.7)

For fixed m, and p — 0, the result is unbounded,
It is at this stage that we apply mass renormalization (52.6'), whereby

the mass my is expressed in terms of my and % Thus (54.7) takes the form

(54— St 55) = B [ =1

The terms with -;— cancel and we can let p go to zero. We thus obtain the
equation

nt__u: _ L uq ~1 e—-nb 4 8
e n e et ] S (54.8)
If gis replaced by its expression in terms of g,,

w T
=gl

the equation takes the form

=N b M) T e '
&= 2u _Ianz[l gfz:m(n-}-n)] R (54.8')

Equations (54.8) or (54.8') determine the energy of the (VN) system for
fixed b. We see that for / =+ 1 the particles V and N are attracted,

®w2

E—(m, +my) =e= _;"' <0, and for / = -~ 1 they are repelled.

2
For 6> %, ¢ (b) is approximately the Yukawa potential

e=— 1L " (54.9)

Thus, the interaction potential between N and V, U () = & (6), depends on
whether the particles N and V are in symmetric (in particular, s-wave) or
in antisymmetric (in particular, p-wave) state. This is not surprising,
since the interaction associated with exchange of 6 particles gives rise both
to ordinary and exchange forces. Note that the presence of two different
potentials does not spoil the orthogonality of the wave functions, since
wave functions which are solutions of the Sch. Eq. with different U (r) have
different symmetry and are thus automatically orthogonal to one another.

§ 55. VECTOR INTERACTION
Let the fermions V and N have spin 1/2 and the bosons 6 have spin 0, The

wave functions of V and N additionally depend on a spin variable, For
s =1/, we are dealing with two-component wave functions. In accordance
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§ 55. VECTOR INTERACTION

with the usual convention of specifying spin functions, we assume that the
first component corresponds to the state s, = +1/, and the second component
to s, = —Y,. These components will be subscripted with a and 5. We
introduce corresponding creation operators for particles with upward and
downward spins:

NoVie si=+5: NVi—s=—1.
The density of the interaction Hamiltonian h corresponding to the
reaction V 2 N6 is a scalar which can be formed from the product of a
spinor N, an Hérmitian conjugate spinor V*, and a scalar ¢, One possible
approach is to form a sum of products of corresponding components of N
and V* (we know that such a sum is a scalar) and to multiply it by ¢:

hy =g (VaN, +ViNy)o + h.c. (55.1)

This interaction in no way differs from the scalar interaction that we have

so far dealt with, Indeed, if initially all the particles had their spins

pointing up, the spin will remain up. Particles with antiparallel spins

do not interact; the spin and the orbital momentum are separately conserved.
Another possible approach to this interaction, which should be independ-

ent of the momenta of V and N (i.e., independent of the space derivatives

of V (r)and N (r)) is the following: we act on the spinor N with the spin vector

%and multiply the resulting spinor by the Hermitian conjugate spinor V*.

The result V*sVN is a vector, and therefore to obtain the scalar Hamiltonian
density, it should be dot-multiplied by the vector V¢. Let us write out

in more detail the expression for V*sNVe, using the symbol h, for this
scalar quantity. We have

_1 (az ar—iay,
86 =7\ac+ia, —a, )'
i 0 a 2
hz=V*SNV(P= —2-[V:Na'az—+V2Nb($— iw>+
+ViNa( + i35 )—ViNs 3|9 (r). (55.2)

The interaction Hamiltonian is obtained in the following way: h, is multiplied
by the interaction constant f, the Hermitian conjugate of the product is
added, and the sum is integrated over the entire volume:

H.=S[fh.(r)+h.c.]dr. (55.3)

For this Hamiltonian to be invariant under’space inversion, i.e., to

conserve parity, the product of the three wave functions ¢y should be

a pseudoscalar, since 8V is a pseudoscalar operator (this follows from the
fact that the spin sis a pseudovector). For this to be so, it is sufficient,
say, if ¢y isa pseudoscalar, and ¢y and Py are real (not pseudo) spinors. Note,
however, that if the Lee model corresponded to experimentally observed
facts, we could in no way determine separately the individual parities of

V., N, and 8 from simple observation of reactions described by the Hamiltonians
H,and H,, From these observations we can only determine the product of
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Ch.8. THE LEE MODEL

their parities (+1 for H, and -1 for H,), since by conservation of n, and n, in
any reaction, one V particle on one side of the "equality'' invariably corre-
sponds to one N and one 8 on the other side. Similarly, we cannot establish
the absolute parity of a proton (or a neutron), where "absolute parity" is
defined assigning positive parity for the vacuum, This is so because in all
nucleon reactions the baryon charge is conserved, and we canonly determine
the product of the individual parities of the particles taking part in the
reaction. On the other hand, the parity of the m meson (equal to —1) can be
determined in absolute terms, since the exact conservation laws do not
forbid a reaction of the type N — N + a® (here N is a nucleon). In the
particular case of the a® meson the parity can also be found from its decay
into two ¥ quanta, In these reactions the parity of the n® meson is inferred
from the polarization ratio of the two ¥ quanta, irrespective of the parity
assigned to the electromagnetic field (the parity of a system of two y quanta
with zero resultant momentum is +1 for parallel polarizations and ~1 for
antiparallel polarizations). The parity of n* and i~ mesons is taken equal to
the parity of the »® meson (i.e., negative), since these three particles
constitute an isotopic multiplet.

In summing, we can say that the determination of the absolute (i.e.,
relative to the vacuum) parity is feasible only for particles whose conserved
quantum numbers are the same as those of the vacuum («*falls in this
category) and moreover only when the particle decay is governed by
parity-conserving interaction.

To return to the vector interaction, we write H; in the momentum repre-
sentation, dropping the subscript & of V and N and omitting the factor
8 (k, — ks — By), which accounts for momentum conservation:

= (2n)""Sdk LifV* (sk) Ngs + h.c. ],
k = {ksinBcosq, ksinBsing, kcosb],
ifV* (sk) Ngw = if 5 (ViN,cos® + ViN,sine™ +
+ ViNasin8e"® —ViN, cos6) g,

(55.4)

As in the scalar case, the states of free motion of the 6 particles (p;] 0>
and the N particle (c,N;+ cV3)|0) are eigenstates of the total Hamiltonian
H,+ H,. The state of the physical V particle {(with its spin pointing up,
say) is sought as a superposition of a "bare' V particle with its spin up
and a cloud of N and 0:

[Vay = 27{Vi |05 + (i Lba () N -+ 9 (8) 3193 103} (55.5)

As in the case of scalar interaction, we first compute ¥a (k) and ¥, (k)
to first order of the perturbation theory, with the same restrictions on m,
and my., We find

k  ifcos®
Yo (k) (2“)-/. T E R <my (&) —my =

v i VE
- Eem— V TVe6.9],

& ifsin6e’® -
(2“)'/- 2 E (k) — my

- @ ree [+ V EY a6, 9]
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where

E(®) = my +p + B2

The factors cos 6 and sin fel* ensure momentum conservation: a V particle
with spin up decays into an N particle with spin up and a 6 particle with
{=1, m= 0, or an N particle with spin down and a 6 particle with /=1,
m =+1, The conservation of j, was clear from the start, since the
Hamiltonian is invariant under rotations. The conversion of V., into N, and
8 with [ = 0 is forbidden since the parity P of this state, equal to the
product of the parity P, of the coordinate function of 8 (P; = (—1)Y) and the
internal parity Ps= -1, is negative for / = 0, whereas the parity of the

V particle is +1. Thus, part of the time the V particle spends as ¥ and 6
in the p-state (I =1). Clearly both terms in (55.6) correspond to the

same value of j* and since for V; [0}, j = %, we should assign j = él-to
the entire state. This can also be concluded from the Clebsch —Gordan
coefficients, which are +|/ % and —|/ -%- Thus, during the fraction of

the time when the physical V particle consists of N and 6, the orbital
motion of 8 corresponds to the state py, of the (N, 8) system.

Note that the cloud of 8 around N in the py, state is spherically symmetric
(if we sum over the two spin states of the N particle). Therefore, if 6 is
electrically charged, the V particle acquires no electric dipole moment,
even though we are dealing with vector interaction, This is a direct
consequence of parity conservation: the relation between the polar vector
of the dipole electric moment and the axial spin vector cannot be invariant
under space inversion.

In case of an unstable V particle the wave functions . (%, 0, ¢) and ¥ (%, 9, ¢)
characterize the angular distribution of the emitted decay products, ¥ and 6.
The distribution of the emitted 8 particles is again spherically symmetric.
Note, however, that for N particles emittedata certainangle (the ¥ particles
are emitted in the opposite direction relative to the 6 particles) we know
not only the probability ratio of the states with s, =+1/, and s; = - 1,, but
also the phases of the corresponding amplitudes. This means that the
N particles emitted at a certain angle (85, 95) when polarized V particles
decay (in our example sy =+1f,) are completely polarized. This is a much
stronger proposition than that concerning the probability ratio for sy =+1,,
The direction of the spin of the ¥ particle will be defined as that direction
along which the projection of its spin is +1/, with sufficient likelihood; this
direction will be specified by the polar angles 6, ®. The spin part of the
wave function of this state is proportional to

cos —g— ( )
. 55.7
sin %e‘o

Comparing this expression with ¢, and $» we find

O =gy, 8 = 20y. (55.8)
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That the particular Hamiltonian H, corresponds to interaction with the
py, wave only is directly evident from the form of the Hamiltonian. To
elucidate this point, we introduce the operators

k .
P t,m = WSY'- m (ek’ q’lz) P dQ.,

o)l
P = L)T)‘ 3 Pt 1 m O @)
i.m

(55.9)

which destroy a free-moving 0 particle with definite values of ! and [, = m;
their Hermitian conjugates are the creation operators. Here Y., (8,¢) are
normalized spherical functions . *

Inserting expression (55.9) for @¢ in (55.4) and integrating over dQ, we
obtain

Hy = (2" (e {if Vam Vi ( V SNt 10—

— ]/jg‘z—Nb‘Plz. 1, n) +Vs (l/_—i—NaCPk, 1, -1 — ]/_—:;—qu)p, 1.0)] +h.c. } (55.10)

If we now use the Clebsch —Gordan coefficients (see, e.g., /8/, where
the normalization of Y, . (8, 9)is also discussed) to introduce the destruction
(creation) operators of an ¥ + 8 pair with definite values of /, j, and j,,

o

(NO). =C;’ﬂ>._,_"_ ,/.N¢+ C"n(Ph.,' n+,/'th (55.11)
(NG):_ e C{',q:k. oy Vot C:’Wk, Lt N,
H, is written in the form
Hy = — @y kak (if yER V2 (N(-)):;:' "t V;(Ne)'_"‘%‘] +hc.). (55.12)

This means that V interacts only with the py, wave, i.e., the wave with
I=1, j=1,

As in the scalar case, the exact solution differs from the first order of
the perturbation theory only by a normalization factor Z%. We have the
equations

_ X nlz'dk

= Tg TR (55.13)
Cm o Ankrde 1
§ TR (55.14)

In this case, the two integrals diverge., The reason for the divergence of
the integral for Z7! is very clear in the coordinate representation. While
the s-wave solution near the origin behaves as r™ and therefore {drinr? |¢*
converges, the p-wave solution near r= 0 behaves mainly as r? and it
cannot be normalized on account of the excessive density of 8 particles

for small r. It also becomes clear why the "fuzzing' of the interaction over

* Note that the vectors g} , .10 are normalized by the following relation:

€010y, 6, w91, 19 = g 8 — K) BB,
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§ 55. VECTOR INTERACTION

a range ~p leads to convergence of the integrals and we see how the integrals
depend on p. We now introduce the renormalized charge |/, |* = Z|f?. The
density of the 8 cloud at a finite distance is proportional to |f|*. It is thus
|f-1* which should be an observable,

The fundamental difference between this case and the scalar interaction
is that here, already for an arbitrarily small | f,[*+ 0, we obtain

i,
P = =T pn=—="=0,

since I, = 4+ oo, This means that for any f, & 0 the system Hamiltonian is
non-Hermitian, with all the ensuing unpleasantness. So as to avoid contra-
dictions with the fundamental principles of quantum mechanics, the Hamiltonian

must be kept Hermitian, and this requires cutoff at high momenta A ~ %.
The following equality should thus be satisfied:

A

1 (ke gnede 1 (55.15)
<2u>'§ T E®—mP ST,
Hence it is clear that as |f,|* decreases, the maximum permissible A
increases and the interaction approaches with better precision the local
point interaction. For example, in quantum electrodynamics (where the
formulas are naturally different from {55.15)) this condition takes the form

A me-e™, (55.16)

so that hopefully we are very far from that limit where a substantial modifi-
cation of the theory will be required to fit the observed data. Hence it also
follows that breakdown of quantum electrodynamics at energies much less
than Ac would indicate substantial nonlocality of the theory. However, for

A ~> 00 we should have |f.[* = 0. In the relativistic theory of elementary
particles, an analog of this is the theorem of the "Moscow zero' [227/
which states that for A -» oo the observable interaction vanishes (if only
Hermitian Hamiltonians are considered).

Scattering in the vector interaction. Scattering by vector
interaction differs from the case of scalar interaction in that charge
renormalization is essential if we are to obtain bounded results. Consider
the scattering of a 8 particle with initial momentum &, = (0, 0, k) by a polarized
N particle with spin pointing up (treatment of the general case need not
introduce any fundamental difficulties).

The solution of the equation

HIAY =E (k)]|A) (55.17)
is sought in the usual form

| A = Nig,| 05 + {dk 11 (k) N2 + 1o () N31 93105 +CVi| 0. (55.18)
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The term V;]0) can be omitted from the outset, since the incident wave
contains only states with j,=+1/2. We thus obtain the equations

C lmo— E (ko) —ie] = —(2) "if {' + { db 3 [xal®)cosd + x, (k) sin eI},

LE (k) — E (ko) — ie] 10 (k) = = (27" if'C cos, (55.19)

(E (k) — E (ko) — ie] 15 (k) = — (21)"*ifC sin 8¢,

Solving these equations, we find %z and C (the expression for % is entirely
analogous):
k  (2r)""*if cos®
x,(k):C-—z—-E&))T’;{%’S:TB, (55.20)

o0

My :p Ro 1f12¢ & 4uk? dk !
[}

Inserting for my in (55.20) and (55.21) its expression in terms of the
renormalized mass my and a divergent integral, we obtain

_ hotcos® 1 [E (ko) —my]™ e (55.22)
Xa = % (QMPER —E(k)— 1+ (fPT:"

Here the integral
Iy = _‘_§°£ Ani® dk (55.23)
PP ) 4 [EW—mIE®—ER) il

still diverges for large k, although less so than the integral in (55.15).
Inserting the renormalized charge, we ensure convergence of the integral

o0

T P ) ot 55.24
Ii=I— L= (Et) — m) s\ T rm—mpE® —rw—a" (55.24)

[]

and finally the scattering amplitude in the coordinate representation (see
{21.5) —(21.9)) takes the form

C Rylese P
Aa(O.‘P)——'M(n,_'_k;) ifiLrn
2 o 2
2,0, ) = — ‘o sin@e? 17,1 (55.25)

T et a) TFIETR
b 20— 3w (K] 4 %) — 2R3
T ® B

Iy

The differential scattering cross section %-(IA.|’+ |4s[*) is seen to be

independent of the scattering angle.

Note that although cutoff of large momenta is inevitable if we are to
retain a Hermitian Hamiltonian, the amplitudes (55.25) are the limits as
A — oo of the amplitudes in the theory with cutoff. It is because we use
renormalized mass and charge that the dependence of the amplitudes on A
is such that the limit as A —» co can be taken, Particular calculations are
of course best carried out directly for the limit values.
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§ 56, PARITY NONCONSERVATION

Our model can be conveniently applied to the analysis of the polarization
of scattered particles.

We start with a scalar interaction. In this case, as we have noted before,
the initial polarization of the colliding particles (e.g., a certain spin
orientation) is conserved after the collision, since the scalar interaction
is spin independent. Therefore, if the N particles in the target are
unpolarized, the scattered N particles will also be unpolarized. If the
spins of the target N particles point in the direction of motion, the scattered
N particles also have their spins in the primary direction, i,e., although
scattering in this case does not produce polarization, the angle between
the spin and the direction of motion is changed.

In the case of vector interaction, scattering in our model can be treated
as formation of a V particle — the collision product of ¥ and 6 — which
eventually decays into its constituents. Since the incident 8 wave (it is
taken to propagate in the direction of the z axis) contains only states with
m = 0, V particles in states a and b are created with amplitudes which
are proportional to the amplitudes of N in states qand b, respectively,
After that the V particles decay. Since a bare V particle interacts only
with the py, wave of N, 0, we conclude that the 6 particles are scattered
isotropically (as viewed in the center of mass system, of course) irrespec-
tive of the actual character and degree of polarization of the primary N.
The magnitude of the scattering cross section is thus independent of polari-
zation. Indeed, to any ''pure', i.e., completely polarized, state of a
created V particle we can assign a definite spin direction. Such a V particle,
as we have seen before, decays and produces an isotropic distribution of
0 particles. If the N target is partially polarized, so that it is described
by a density matrix (in spin variables) and not by a wave function, the
intermediate V particles are also described by a density matrix. Since the
introduction of a density matrix is a way of averaging over an ensemble
of "pure' noninteracting systems, the isotropy of scattering is not broken.

If the N target is initially unpolarized, the scattered N particles remain
unpolarized in the vector case as well. This can be proved as follows,
When a state V0> decays, the N particles emitted at an angle (8, ) have
their spins pointing in the direction (55.8); when V30> decays the spins of
the N particles emitted at the same angle point in the opposite direction.
Thus, if the target is a mixture of N;|0> and N;|0) with uncorrelated phases,
the states Vi|0) and V;|0> and hence the scattered N particles will have
uncorrelated phases, which proves that the scattered N particles are
unpolarized. However, scattering by polarized N particles in case of
vector interaction does not leave the direction of polarization unchanged.

§ 56. PARITY NONCONSERVATION IN THE LEE MODEL

The assumption of parity nonconservation in weak interaction led Lee
and Yang /92/ to two fundamentally new conclusions concerning the behavior
of elementary particles with spin.

The first conclusion related to the possibility of asymmetric, nonisotropic
decay. The decay products should be preferably emitted in the direction of
the momentum of the decaying particle (or in the opposite direction).
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The other conclusion suggested the possible existence of a dipole
moment in elementary particles, again parallel (or antiparallel) to the
particle momentum.

The first of Lee and Yang's two conclusions was brilliantly confirmed
in experiments with p decay of polarized nuclei {93/ and muons /228/.

The predicted order of magnitude of the dipole moment, however, is
definitely beyond the possibilities of experimental detection. Landau
developed a comprehensive theory linking the nonconservation of parity
in the decay of charged particles with space parity /299, 230/.*

Landau's theory retains invariance under time reversal (t > —),
although the space parity is not conserved. Recent experimental results
/94/ indicate that T -invariance is not exact either, However, the inter-
action breaking the T -invariance isapparently weaker than the interaction
which changes the space parity. ** Landau's theory with T-invariance is
thus nevertheless of definite interest.

One of Landau's conclusions is that the dipole moment of elementary
particles is identically zero. At a first glance it would appear that
asymmetric decay should lead to a finite dipole moment: consider a
polarized neutron with its momentum pointing up; it is an established
fact that, when decaying, this neutron will emit electrons mostly up.

Now consider the same polarized neutron in the spherically symmetric

field of a nucleus; the energy relations are such that the neutron is stable,
it does not decay. Virtual decay, however, is allowed and in fact inevitable:
the neutron emits an electron, which is reabsorbed instantaneously; we may
thus visualize the nucleus as surrounded by a cloud of virtual electrons.

Since the actual decay is asymmetric, the virtual decay can also be
expected to show certain asymmetry, and an asymmetric cloud of virtual
electrons should produce a dipole moment. Landau gave a general proof
of the fallacy of this primitive reasoning. Ioffe /234/ established the
dependence of decay asymmetry and dipole moment on the assumptions of
T-invariance. The point is that the assumption of linear relation between
the momentum & of the emitted particle and the direction of polarization
(spin orientation) s of the decaying particle is consistent with time reversal:
both vectors reverse their sign. The static dipole moment & or, alter-
natively, the static center of gravity of the cloud of virtual particles r do
not change their sign when time is reversed. The spin s is therefore
related to the static quantities r and 4 only in a theory which is not invariant
under time reversal,

Consider the decay of V into N with the emission of 8, assuming a parity
changing interaction in our model (V and ¥ have spin 1/2). This will enable
us to elucidate the dependence of the decay asymmetry of a polarized
particle of spin 1/2 on the phases of the coupling constants in the expression
for the decay interaction,

To first approximation, the decay asymmetry is found to depend on the
imaginary part of the vector coupling constant, whereas the dipole moment
depends on the real part of this constant, so that there is no direct relation
between decay asymmetry and the dipole moment /208/.

* The possibility of combining mirror reflection with transformation to antiparticles was suggested
independently by Lee and Yang,
*+ A detailed treatment of the properties of T-noninvariant interaction can be found in reviews /231, 232/.
Note that the detection of the electric dipole moment of a particle {e.g. , an electron or a nucleus)
in a neutral atom is further complicated, as was observed by Schiff /233/, by the fact that screening
suppresses the first order effects associated with the electric dipole moment,
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We have already noted that for the total Hamiltonian to be invariant
under space inversion, the product of the parities of V, N, and 6 should be
positive for scalar interaction (H,) and negative for vector interaction (H,).
Hence it follows that a Hamiltonian which contains both H, and H, at the
same time cannot be invariant under space inversion, Therefore prior
to 1956 — before the discovery of parity changing interaction —considerations
of invariance under space inversion automatically ruled out Hamiltonians
with the sum H, + H,. For parity changing weak interaction, however, we
must consider Hamiltonians of the form Hi= H, +H,.

Consider the decay V>N 4 6, The problem will be considered in the
first order of perturbation theory and the reverse process 6 + N —V is
therefore ignored. Since we are not concerned with renormalization at
this stage, no distinction is made between m, and my.

The coordinate representation is the most suitable for our purposes.
First we isolate in explicit form the motion of the center of mass. The
wave function of the V particle is taken in the form of a plane wave (the
spin of V is assumed to point up):

v =Se“"vz(r,)dr,|o>. (56.1)
The operator Hix= H, + H,; converts this state to a vector with ¥ and 6:

1¥,05 = 3} (0clra ro) NE(r) @' (ro) dradra [0 (56.2)

ima, b

(i is the spin index of N).
The first-order perturbation equations have the usual form

Hu|Vy = [Ey () — Hy)|N®), (56.3)

where H,is taken from (52.1) and Ey ()= my + #*/2my. We now write Hix
in more detail:

Hue= ({{ {Ver) [N} (r) 9 (r5) + fouk (ra) 35 0° (7) | +
+h.c.}8(r—ra)8(ry— ra)dridrydry. (56.4)
The equations for ¥, (75, 73), ¥ (s, 75) are
[Ev(k)_fIlN “+2m A+ 2“ r.]\Pa(rlv'a)—-
ghn [gb (rs—ry) + 5 5:7 d(rs— r,)]
[Ey(k)_mN —p + H Ar.+ 'z‘lr Ah]%(’lv r’) =

ilr.

(56.5)

=¢ (-&.—+i )b(r,—r,)

Making the standard substitution

Myry + wry

R="T

r=yry—7rs,
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we separate the variables

Yry, r3) = e*RPi(r);
for ¢(r) we obtain an inhomogeneous Sch. Eq., with the mass p replaced
by the reduced mass of N and 6. Using the symbol p to denote this reduced

mass, we may write

AVa + 20Eba= 2 [ga n+Lle )]
Mty + B =20 L (5 + 1 5) 8 (),

(56.6)

Here E is the energy released in the decay.

The decay is allowed for E> 0, when 0 particles with momentum
p =V2uE are emitted. At large distances from the source, the solution
should behave as an outgoing wave ¢ ~ e’?"/r, Indeed, in this case

elpr ipr
Vo= — g 65+ eos0 2 (F)) (56.7)
P ——J—Le‘Vsinei(’m) .
Y= T En 2 ar\"r J°
For pr>1,
1 eor
\pa=_H' [g_|_mf cose] (56.8)
¥ =—£; p’e""sme

For E < 0 real decay is forbidden. Virtual decay is described by a
solution which falls off exponentially as e*/r, where %%2m = —E. In this
case we get

Yo = —E[g e_:’—}— —g—cose%(‘—,")] =

(56.9)

I)=

<
o
|
|
&l
- NI"
°,
€
@
a
=
|
—_——

These expressions provide an indication of decay asymmetry or of the
asymmetry of the cloud of virtual particles when no actual decay takes
place. A significant feature is the appearance of two terms in the expres-
sion for ¢,: the transition of the V particle with s; = +1/2 to N particle
with s; =+1/2 may be accompanied by emission of either an s-wave (= 0)
or a p-wave (I =1, m= 0) 9 particle. Interference ofthesetwo terms in ¢,
gives terms linear in cos 6 which are associated with the spin orientation
of the decaying V particle (0 is the angle between the direction of polariza-
tion of V (the z axis) and the radius-vector r).

The wave function ¢ corresponds to a transition of V, s: = +1/2 to N,

5: = - 1/2, It describes a p-wave 6 particle, I =1, m=+1,

Since ¥. and s are related to different orthogonal states of the N particle

(spin up and spin down), there is no interference between v, and ..
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The current of 8 particles for large r in the case E >0 is

. i . . . -
J = 357 ($aVha— Ya Viba + $sVi0s — $oVips) =
1 & 2] iR .y
=W,,—l‘$[lgl’+7|f|’+'7(fg—fg)cose]- (56.10)
For E <0, we are concerned only with the distribution of the density p of
virtual 8 particles, since the current at infinity is zero:
e-m"

P = Wibe + Vi = o L€ + T 1P{1 + )
— 5 (145 g + Fercoss)]. (56.11)

Expressions (56.10) and (56.11) contain a highly significant result; they
show that there is no identical relation between decay asymmetry and the
asymmetry of the cloud of virtual particles: one depends on g'f — gf* and
the other on g*f + gf*.

Let the scalar coupling constant g be real (this can always be accom-
plished by a suitable gauge transformation),

It is readily seen that time reversal operation T reduces the Hamiltonian

H,=SdkifV*(ek)Nq;,+ h.c. (56.12)

to the form

T"H,T=—Sdhif‘V+(¢k)Nq>,+ h.c., (56.12')

since this operation reverses the sign of the momentum & and the spin ¢
simultaneously and the ¢-numbers are replaced by their complex conjugates
(the operator Tis antiunitary). Thus T invariance, and hence the property
of zero dipole moment, are observed only if f is pure imaginary, so that
T*H,T = H,,

The decay asymmetry depends on the imaginary part of f and is zero
when f is real,

Conversely, for imaginary fthe decay is distinctly asymmetric, but
in the expression for the density of virtual particles the term with cos 6
vanishes, the density distribution is spherically symmetric, and the dipole
moment is zero,

We can consider a more general case, when, besides the interaction
responsible for the transformations N 4+ 022V, there is an additional
(say, Coulomb) potential between the particles N and 8, If the action of
this potential on 6 is taken into consideration, but it is assumed to be
spherically symmetric, the conclusion of zero dipole moment for imaginary
f remains in force: to the real term g in the equation corresponds a spheri-
cally symmetric real solution and to the imaginary term i|f{ cos 6 corre-
sponds an imaginary solution which is proportional to |f| cos ; no inter-
ference terms proportional to cos 6 enter the expression for density, as
before.

However, if fis real (so that the decay is perfectly symmetric when no
additional potential is imposed), the next higher approximation reveals
decay asymmetry: when U (r} is introduced in the expression for the outgoing
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wave, the phases of the s-wave and the p-wave change by different amounts
as; and ap, * so that for the wave function ¥s for pr> 1 we obtain the asymp-
totic expression

Y, = a’ exp (ikr + ia)/r + ik cos 0.0’ exp (ikr + ia,)/r (56.13)
and for real f

J = 2@y + B2 ') + 20 cosOsin (o — a)). (56.14)

Here a’ and b’ are respectively proportional to g and f, and the proportionality
coefficients are real. In the absence of a potential, the decay will never-
theless be asymmetric if the source is extended and g and f are real.

§ 57. ELECTRIC DIPOLE MOMENT OF AN UNSTABLE
PARTICLE

In the previous section we foundthat in 7 -invariant theory a stable
particle cannot have an electric dipole moment. This assertion, however,
as was first shown in /209/, cannot be extended to unstable particles.
Indeed, an unstable particle is characterized by an exponentially decaying
state amplitude and is enveloped in an outgoing wave of emitted decay
products. When time is reversed, the unstable particle does not simply
change to an identical particle with opposite spin; it becomes something
entirely new, a state with an exponentially growing amplitude surrounded
by colliding decay products. Our proof of zero dipole moment thus clearly
cannot be extended to cover unstable particles.

Bell /235/ maintains that unstable particles have no electric dipole
moment either, In his treatment, however, he leans heavily on a peculiar
definition of an unstable particle whose physical meaning is not immediately
obvious.

Rigorous approach to this problem calls for a detailed study of the
scattering of stable particles passing through an intermediate unstable
state /210/. Consider a thought experiment in which the electric dipole

moment of the unstable particle in the intermediate

state precesses the spin of the stable scattered
Py + g particles. We will show that no spin precession is

observed in the stationary problem on account of

m, its T-invariance, For the scattering of a wave
_________ £ packet, on the other hand, the spins are precessed,
but in a very peculiar way, so that although the
My +, time-average spin precession is zero, it is different
from zero at the initial instant.
FIGURE 39. For simplicity suppose that the unstable particle

is neutral, and decays into neutral particles, which
are not affected by the electric field. The model,
however, should also contain charged particles responding to an electric

* a andap, which are functions of the potential U {r), represent the increment of the phase of the regular
solution of the homogeneous equation for s- ana p-waves relative to the s- and p-waves of a free particle,

& .
¥s = sin krfr, P, =cosb (cﬁsr—' - -SI—:r,k—r) .
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§ 57. DIPOLE MOMENT OF AN UNSTABLE PARTICLE

field. A suitable model was proposed in /209/. This is a five-particle
model, with 6, N,V, N, and 8. The particles 6 and ? have spin O; N, N, and
V have spin 1/2; 8, N, and V are neutral, N carries positive charge, and 0
negative charge. The masses of the particles are so chosen that V may
decay virtually into ® and N; the parity changes in this decay. Let further
V decay actually into 8 and N{my + my << my < my+ my).

The term diagram of this system is shown in Figure 39, where the
dashed line corresponds to the energy of N and 8. The system is immersed
in an electric field of strength F pointing along the 2z axis. According to
/210/, this system is described by the Hamiltonian,

H =mNSN*(r)N(r)dr+mﬁSN*(r)IV(r)dr+
+ ma{ V)V (1) dr + (i (7) (0 — ) m(r)ar +
+{e (E— 52 o ar +[1{V (AN () ogr)ar+
+gSV*(r)IV(r)q>°~(r)dr+h. c.] +
+mgv+(r)c1s7(r)":;fdr +h.c. +
+ F vy (N 20 (1) dr — F (45 (1) 25 (n) dr. (57.1)
In T-invariant theory, f*=f, g =g k" =h, The state vector is

© = [(w(rs ) N (r) 98 (ro) drdra + (@ eV (r0) dr +
+ {10 r) B (r1) 95 (72) | dradry 03, (57.2)

and in the center-of-mass system the equations H¢ = E® may be written as

By =(my+r— 5 )b+ R0, (57.3)
Ey = (my+F — o) %+ Pt @+ iksV)3(r) e, (57.4)
Eg = mop + (g + ihaV) % (p) + ¥ (), (57.5)

where m, is the nonrenormalized mass ofV, pis the cutoff radius, which goes
to zero after renormalization.
To first approximation, we omit Fz., We obtain an exponential solution

with complex energy E, =¢— 127- The real and the imaginary parts of E,

respectively determine the mass of the particle V and its decay probability.
To simplify the expressions, we will assume the parity-nonconservation
constant and the decay constant to be small, so that terms with f¢, A%, etc.,
can be dropped. We moreover take 1/2<€ my + B —e, 1/2<€ e —my—p, which
leads to the constraints

wpe | o i
7 <zTTk—o’ W<z
Here and in what follows we use the notation

W =2 (my +p —E), #=20E—m—p),
w2 =2 (my +p—e), k=2 (e—my—p).
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By (57.3) —(57.5) we get

- . ~
mo=e BE L 4 PL L KEy, (57.8)
o MR/ (57.7)

ng: p

14+ 5 %

Note that if the second term in the denominator of (57.7) is much greater
than 1, i.e., if the coupling between N,8, and V is sufficiently strong,
we have

r o M ke (57.8)
pgt p

i,e., the decay probability of ¥V markedly decreases. If now the particle V

may decay into other particles N and 8, etc,, additional positive terms

will enter the denominator and the decay probability will diminish further.

This effect in principle may be applied to explain the small width of some

experimentally observed resonances.

We will now consider Fz to first order. Solving equations (57.3) and
(57.4) for ¥ and ¥ and inserting these functions in equation (57.5), we find
that E, has no correction which is linear in F. The expression for 8E, is
thus the same as in the perturbation theory for complex E,/182, 183/,
8E,=F{$;*pezdr = 0, The result 8E, = 0 would appear at a first glance to
contradict Newton's third law (action equals reaction). Indeed, the unstable
particle produces a dipole electric field, since {¥;%ozdV = 0, but the homo-
geneous electric field does not lead to a precession of its spin about the
field vector, since no splitting is observed 8E, = 0. This contradiction,
however, is purely fictitious. It only means that unstable particles must
not be manipulated like stable particles, If we remember that at the very
beginning and at the end of the process we are dealing with stable particles
(i.e., we do not dissociate the creation process from the decay process),
no such paradox arises.

The precession effect may be observed for the scattering of 6 by N,

If before scattering, N is polarized along the 2z axis and the electric field

is directed along the x axis, its polarization after scattering can be
expected to precess through a certain angle a in the yz plane. For this
effect to take place, it is further necessary that the state of the 6, ¥ system
have no definite energy, i.e., we must consider scattering of wave packets.
(The effect of the electric dipole moment in scattering is a foo’] F effect,
and because of invariance under combined inversion it vanishes if the 6NV
system has a definite energy.) Note that if the V particle has a magnetic
moment and is immersed in a magnetic field, spin precession is observed
in the stationary case also,

Our problem reduces to the solution of a system of equations

1D = (my+r—g) 0+ (N0, (57.3")
% = (my+ B )X Ptk g+ heV) (), (57.4')
12— map + (g -+ ihsV) 1 (0) + 1 (o). (57.5')
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We choose the following initial conditions:

‘P(’-O) =Y, (n) a, X(f-0)=0, (P(O)=0,

(r—rep
1 —-1pr—?
o 2 Van Vr ( )
a (f) corresponds to spin up (down). Let us calculate the derivative
ds(t)y _ d , ¢ . .0
X =T”_[S\p 2 pdr+ Sx (S +trp1)ndr+ o' 5-9]. (57.10)
Using (57.3') —(57.5'), we find
ds (¢ .
W =1 .01Frixee nar. (57.11)
Integration of this equality over time from 0 to oo gives
8s =y (7 ) (FrIn(r tydrat. (57.12)
To evaluate As, we make use of the fact that the functions
_ 1 _e—lkr+s(k)eihr (57.13
W= vE 7 ’ )
_ 1 x g ikeV
= E (S(k) l)————f i (57.14)
___ Sk—1
P = T (57.15)
constitute a complete orthonormal system. Here
m2* 2 i
S(k) = (e—E)[i+ﬁ%+"o]+‘% (57 18)
® = B B )
("’_E)[1+Fu+uo]_if

(the formulas are written for E < my + ms, for
E>my+mg, x——i) 2ﬁ(E—mN—m?) ).
Expanding the functions ¥, ¥, ¥, ¢ in this complete system and dropping

exponentially small terms, we find that As = 0. Let us now find the first
moment of spin precession, i.e., calculate the integral

As1=S"’d_§”tdt. (57.17)

Omitting the details, we give the final result:

Asl=_iE£'lLL‘_|S(k)_1|1. (57.18)
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On the other hand, given the exponential solution which describes the
unstable particle, we readily find the electric dipole moment:

=Cor _ g 2P (57.19
¢ S%z%dr R o i !
21 %o
Using (57.7) we obtain
3
As; = — v (Fd T)%%%]S(k)—-l[2,t=;—. (57.20)

Expression (57.19) corresponds to the dipole moment of an exponentially
decaying particle. The dipole moment is found to be proportional to y, i.e.,
to the time derivative of the wave function. We can thus interpret (57.20)
as follows: in the initial stages of scattering, when the amplitude of the
wave function increases, the dipole moment has a certain sign and the
spin precesses in a certain direction; toward the end of the scattering
process, the amplitude of the unstable particle decreases, the dipole
moment has a different sign, and the spin precesses inthe opposite direction,
On the average, the spin precession is thus zero, The moment of spin
precession, as should have been expected, has the same sign as the pre-
cession angle of the decaying particles, The structure of the final expres-
sion is also clear: Ag,is proportional to the particle lifetime 1, the
precession of the spin of the unstable particle (vFd), the resonance factor

%]S (®) — 1*, which is equal to unity in resonance, and finally to a factor

which does not vary much with energy and is alsoequal tounity in resonance.
We thus come to the following conclusion. If the polarization of the

scattered particle is varied as a function of time during the scattering of

a wave packet (time is reckoned from the formation of the wave packet),

the polarization vector can be expected to precess first in one direction

and then in another.
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particle number, see Particle number conservation
in Lee model 196
spin and orbital momentum 209
Continuum 6, 11, 22, 34 ff
wave functions, normalization 37 ff
with 1=0 34 ff
Convergence through renormalization 214
Cooper pairs 102
Coordinate representation 90, 98, 194, 214
in the Lee model 201 ff
Coulomb field, motion in 40
functions 45-46, 172, 175, 188
Hamiltonian 16, 30
phase 172, 173
potential 3, 4%, 6, 6*, 16 ff, 30, 45, 69, 187
energy levels of an electron 16
scattering 173
term 171
Coupling constants 67
Creation and destruction operators 24*, 201, 207,
209, 212
Cross section, see Scattering cross section, Reaction
cross section
in multichannel systems 151 ff
Cutoff factor 87

Asterisk indicates that the subject is mentioned in a footnote.



Cutoff radius 4, 66, 203, 213, 214, 221
and renormalization 200

de Broglie wavelength 8
Decay, anisotropic 215
of quasistationary states 121 ff (also see Alpha
decay, Beta decay)
probability 112, 221
virtual 218
Degeneracy 6, 21
accidental, see Accidental degeneracy
&-function 38
Deuton 9, 14*, 70, 206
Diagram technique 102 ff
Dipole moment 6, 17, 24, 194, 216, 219, 222, 224
and time reversibility 157
in a Coulomb potential 18
of unstable particle 220 ff
Discrete levels in a well, effectof magnetic field 9*
spectrum 1 ff
functions, perturbation-theoretical
treatment 92*
Dispersion relation 71 ff, 74

Effective range approximation 73
Energy levels, hydrogen atom 17, 190
in a Coulomb field 16, 17
of an oscillator 22, 23
negative 5 ff
slit 101
Error function 130*
Expansion in eigenfunctions 113
Exponential nuclear interaction 177
potential 64, 65

False poles 59, 61, 63 ff (also see Redundant poles)
Fermi surface 102

Fermions 32 ff

Feynman’s diagrams 102 ff

Flux quantization 2*

Fredholm's method 97+

Galilean transformations 201
Gamma function 45
spectrum in radiative capture, width 120
Gamow 's theory of alpha decay 108 ff
Generators of rotation group, commutation
relations 20
unitary group 24
Ghosts 202
Graphite container for cold neutrons 16
Green's function 22, 77 ff
algorithms for derivation 81
analytical properties 86 ff
divergence for close values of the argument
89 ff, 92
harmonic oscillator 107
integral representation 87
many-particle 88 ff
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Green's function, one-particle 136
radial Sch. Eq. 77 ff, 83, 86, 88
Sch. Eq. in momenturn representation 95
three-dimensional Sch. Eq. 81, 86, 88, 89
time-dependent 105 ff
two-particle 90

Groups in quantumn mechanics 19 ff

Group property of Sch. F3. 12

Hankel functions 44
Harmonic oscillator 107
energy levels 22, 23
Green's function 107
three-dimensional 31 ff
potential 30
Hydrogen atoms 97*
energy levels 17
-like levels 190

Identical particles 31 ff
Inelastic channel, effects near threshold 181
Infinitesimal transformation 29
Inhomogenity of Sch. Eq. as source or sink 77, 80
Inhomogeneous Sch. Eq. 77
general solution 84
Interaction,local 196, 213
nonlocal 198
of heavy particles 206 ff
switched on in Lee model 195 ff
Interference 48-49, 114, 218, 219
between Coulomb and nuclear scattering 173
Invariance under space inversion 209, 211, 217
time reversal 216
unitary transformation 24
Inversion, space 6

Jost functions 4*

K-matrix 158
Krylov—Fock theorem 127*

Lagrange condition for differential equations 93
Laplace’s method 131
Lasers 22, 26
Lee model 193 ff
Legendre polynomials 47, 178, 184
Levinson’'s theorem 73
Lifetime, continuum states, multichannel systems 167
intermediate state 183
quasistationary states 115, 191
two-channel systems 169
Liquid helium 2*¢
Local interaction 196
Long-lived states 144 (also see Quasistationary states)
Lorentz distribution 128
Lorentz group 22

Mass renormalization, see Renormalization
Momentum representation 94 ff, 104, 193




Momentum representation, Sch. Eq. 21 Parity, pions 210

transfer and analyticity 63 space and time 57
theorem 55 when it can be determined 210
Moscow zero charge 193, 213 Particle number conservation 52, 60, 68, 111, 149, 161,
Multichannel systems 147 ff 179, 186, 187
cross sections, scattering and reaction Perturbation- theoretical series 96
151 ff, 164 convergence 97 ff
lifetime of continuum states 167, 169 accepted criterion for 97
momentum cofiservation 162 summation of infinite 99, 100
phase analysis 151 Perturbation theory 10, 77ff, 143
S-matrix 150 coordinate representation 90 ff
analytical properties 159 ff momentum representation 94 ff
branching points 160 Perturbed equation 21
constraints on 153 Phase analysis 66, 186
expression for 164 ff ambiguity 75
poles 160 Bargmann potentials 66
residues of elements 161 ff multichannel systems 151
symmetry 187 Physical particle 195%, 196 ff, 201, 203, 210
unitarity 151 ff, 186 Plane wave 47
scattering phases 152 Poisson distribution 26
threshold anomalies 185 ff Polarization 43, 184
Muon decay 216 scattered particles 215
scattering 192 Poles in a rectangular box 61
of S-matrix, multichannel systems 160
N/D method 92* symmetry in the k-plane 59
Neumann functions 65 Potential barrier 36 ff
Neutron—proton interaction 70, 206 exponential 64, 65
storage 16 harmonic 22
Nonconservation of parity 57, 215 ff power 29
Non-Coulombic potential, sodium nucleus 18 scattering 114, 203
Nonloca! interaction 196, 213 well, deep 11
Normalization constant, convergence 198 with sharp cutoff 98
integral for quasistationary states 131 Production cross sections, charged particles 176
of continuum wave functions 37 ff Propagator 104
Nuclear models 22 Pseudopotential 15, 16

Observable charge, inequality for 202

mass 198 (also see Physical particle) Quantum field theory 56, 77"
Observables in scattering theory 56 nonrenormalizable 97°
Optical theorem 75 Quantization second 22
generalization §2 ff, 53 Quasiclassical approximation 7, 116, 169*
Orbital momentum 1= 0 34 ff applicability condition 8
1#040ff Quasiparticles 193
plane, conservation 25 method of 97*
Orthogonality, continuum and discrete spectrum Quasistationary states 61, 72, 73, 87, 108 ff, 113,
functions 40, 50 115, 117 ff, 126, 161, 190
Ortho-hydrogen 33 decay 121 ff
Orthonormal solutions, complete set 82 general expression for §(k) 122
Oscillator, degeneracy 23, 24, 25 (also see Harmonic lifetime 191
oscillator) normalization integral
one-dimensional 25 perturbation theory 129 ff
three-dimensional 22 ff . probability of formation 128
trajectory, classical 25 wave function, asymptotic expression 131 ff

Overlap integral 125

Para-hydrogen 33 R-matrix 164, 166 ff, 167
Parity 3, 6, 17, 25, 183, 210 Racah coefficients 41*
absolute 210 Radiative capture 120
nonconservation 57, 215 ff width of gamma spectrum 120
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Radioactive decay 108 ff, 126 (also see Decay, Alpha

decay, Beta decay)

exponential 127, 128

Radium 140
Rayleigh—Schroedinger perturbation theory 90*
Reactions 135 ff, 147 ff

cross sections 170

at low energies 174 ff

two- and three-particle 137
Recombination probability 191
Rectangular well, discrete level 9
Redundant poles 59, 71, 73 (also see False poles)
Reflection coefficient 36

of neutrons by graphite 16
Refractive index 15, 16
Regularization of integrals 130
Renormalizable theory 203

Renormalization as a means to accomplish convergence

214
and cutoff radius 200
mass and charge 194, 198, 199, 200, 201, 202,
206, 208, 213, 214
Representations of groups 21, 22, 25
Residues, S-matrix elements, multichannel
systems 161 ff
scattering matrix elements 67 ff
Resonance 108, 191
energy 117, 119
scattering cross section 191
level 13
physical interpretation 190
scattering 114, 108
cross section near threshold 190
width 114, 128
Riemann surface 114
Rotation group 20
Runge —Lenz vector 19

S-matrix 167
analytical properties 56 ff
multichannel systems 159 ff
branching points 160
multichannel systems 150
branching points 160
constraints on 153
poles 160
analytical properties 159 ff
expression for 164 ff
residues 161
unitarity 151 ff
and time reversal 157, 186
symmetry 153 ff, 158
and time reversal 186
unitary 186
Scalar interaction 198, 199 ff, 215
Ycarttered particles 11, 12
Scattering 1, 41, 98 ff, 126, 147 ff, 202, 205
amplitude 48, 53, 172, 199, 214
nonphysical pole 204
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Scattering amplitude, phase 180
residue 203
cross section 48, 53
at low energies 170 ff
differential 180, 214
in classical and quantum mechanics 48
multichannel systems 151 ff, 164
near reaction threshold 178 ff
energy curves 178
multichannel case 180
neutral particles 47 ff
length 13, 70
nuclear 172, 1173
phases 67, 70, 75, 114
multichannel systems 152
phase analysis 12
pions by deuton 14*
polarization of particles 215
potential 34, 35
power of a potential 35, 45, 46
resonances 13, 108, 140, 191
scalar interaction 199
vector interaction 213 ff
wave functions 44, 111
Sch. Eq., coordinate representation 95
group invariance 1, 24
property 12
inhomogeneous 77
general solution 84
invariance property §7, 59
under rotations or Lorentz transfor-
mation 17°%, 21, 85
lowering the order of 12
momentum representation 21, 95
solution for diatomic molecule 32
classical region 8
in a well 11
nonclassical region 8
Second quantization 22
Separation of variables 7%, 17%, 20
and degeneracy 1
Shell model of the nucleus 22
Short-range interactions 44
potential 3, 4
poles 61*
o~electrons 19
Sign inversion transformation 32
Singular potential 4* 11, 12, 13, 69, 204, 206
infinite number of wells 13 ff
Sodium nucleus 18
Source function 78, 106
(sink) 85
Space parity, nonconservation 194 (also see Parity)
Spherical functions 3, 41, 47, 49, 212
completeness property 84
four-dimensional 21, 86
n-dimensional 22
Spin precession in scattering 222-224
Spherical symmetry 6




Spherically symmetric potential 2, 17, 18*, 25
Standing-wave representation 158, 159
Stark effect 17
Stationary state as limit of quasistationary state
119, 139 ff
Statistics 31 ff
Strange particles 178, 185, 191
Strong interactions §7
SU (3) 25
Superconductivity 2%, 102
Symmetry group of strongly interacting particles 25*
number 33
properties of scattering phases 61
S-matrix 153 ff
multichannel systems 187

T-invariance 216 ff
Time reversal 153 ff
for charged particles in magnetic field 155
particles with spin 155
reversibility, breakdown of 157
in classical mechanics 153-154
Timing mechanism in atomic phenomena 142,
167, 199
Transmission coefficient 111
through a potential barrier 36 ff, 110*
Threshold anomalies 181
creation of charged particles 187
essential singularity 187
for particles with spin 182
in multichannel systems 185 ff
information recovered from 183
effects 170 ff
state 144, 146

Uncertainty principle 8, 30, 110
relation 26

Unitarity §2, 92°*, 153
of S-matrix, multichannel systems 151 ff, 186

Unitary group 24

transformation 24
Unphysical sheet of complex E plane 114
Unstable intermediate particle 204 ff
particles, creation 134 ff
Uranium 111

1/v law 175
Variational principle 29, 202
Vector interaction 198, 208 ff, 215
scattering 213 ff
Virial theorem 29 ff
generalization 30
Virtual decay 218
electrons 216
level 13, 144, 146
particles 197, 199
states 72, 72

Wave function, boundary conditions 2, 3, 4, 11, 13,
34, 78, 148, 171
complete orthonormal system 49
1=0234ff
1# 040 ff
explicit expressions 42-43
non-normalizable 113
normalization 37 f{, 131
single-valuedness 2 (also see Boundary
conditions)
Weak interactions 57
Whittaker's functions 85
WKB approximation 7*

Yukawa potential 208

Zero charge 193, 213
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